优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.

(Ⅰ)证明:MN//平面AA'C'C;
(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.

  • 题型:未知
  • 难度:未知

如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.

(1)求证:
(2)在棱上确定一点,使四点共面,并求此时的长;
(3)求平面与平面所成二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图1,在边长为的正方形中,,且,且分别交于点,将该正方形沿折叠,使得重合,构成图所示的三棱柱,在图中.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在底边上有一点,使得平面,求的值.

  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图1,在梯形中,,四边形是矩形.将矩形沿折起到四边形的位置,使平面平面的中点,如图2.

(Ⅰ)求证:
(Ⅱ)求证://平面
(Ⅲ)判断直线的位置关系,并说明理由.

  • 题型:未知
  • 难度:未知

如图,在边长为4的菱形ABCD中,∠DAB=60°,点EF分别在边CDCB上,点E与点CD不重合,EFACEFACO,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求证:BD⊥平面POA
(2)记三棱锥PABD体积为V1,四棱锥PBDEF体积为V2,且,求此时线段PO的长.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,MA1BAB1的交点,N为棱B1C1的中点,

(1)求证:MN∥平面AA1C1C
(2)若ACAA1,求证:MN⊥平面A1BC.

  • 题型:未知
  • 难度:未知

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

  • 题型:未知
  • 难度:未知

如图,在长方形中,的中点,为线段(端点除外)上一动点,现将沿折起,使平面平面.在平面内过点为垂足,设,则的取值范围是________

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在四棱锥中,底面是等腰梯形, 的中点.

(Ⅰ)求证:∥平面
(Ⅱ)若
(ⅰ)求证平面平面
(ⅱ)求直线与底面成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分13分)在四棱锥中,平面是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:平面
(3)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是边长为的正方形,侧面底面,且分别为的中点.

(Ⅰ)求证://平面
(Ⅱ)求证:平面平面
(Ⅲ)在线段上是否存在点使得二面角的余弦值为?若存在,求的长度;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图四棱锥中,底面是平行四边形,平面的中点,.

(1)试判断直线与平面的位置关系,并予以证明;
(2)若四棱锥体积为  ,,求证:平面.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为梯形,,平面平面

(1)求证:平面
(2)求证:
(3)是否存在点,到四棱锥各顶点的距离都相等?并说明理由.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题