如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点, D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF,正确的是( )
A.(1)和(3) | B.(2)和(5) |
C.(1)和(4) | D.(2)和(4) |
如图,在正四棱锥中,,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③;④.中恒成立的为( )
A.①③ | B.③④ | C.①② | D.②③④ |
若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是( )
A.若m⊥β,m∥α,则α⊥β |
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β |
C.若m⊂β,α⊥β,则m⊥α |
D.若α⊥γ,α⊥β,则β⊥γ |
下列命题中,表示两条不同的直线,表示三个不同的平面:
① 若则;
② 若,则;
③ 若,则;
④ 若,则
正确的命题是( )
A.①③ | B.②③ | C.①④ | D.②④ |
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
设m,n,l为空间不重合的直线,为空间不重合的平面,则下列命题中真命题的序号是 .
(1)m//l,n//l,则m//n;
(2)ml,nl,则m//n;
(3),则;
(4),则;
(本小题满分14分)如图,在五面体中,四边形为正方形,,平面平面,且,,点G是EF的中点.
(Ⅰ)证明:;
(Ⅱ)若点在线段上,且,求证://平面;
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点的位置. (只需写出结论)
设是两条不同的直线,是两个不同的平面,则下列命题为真命题的是( )
A.若 |
B.若 |
C.若 |
D.若 |
如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( ).
A.BD∥平面CB1D1 |
B.AC1⊥BD |
C.AC1⊥平面CB1D1 |
D.异面直线AD与CB1角为60° |
若直线不平行于平面,且,则下列结论成立的是( )
A.内的所有直线与异面 |
B.内不存在与平行的直线 |
C.内存在唯一的直线与平行 |
D.内的直线与都相交 |
m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是( )
A.α∥γ,β∥γ,则α∥β |
B.α⊥γ,β⊥γ,则α⊥β |
C.m∥α,n∥α,则m∥n |
D.m⊥l,n⊥l,则m∥n |
试题篮
()