某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为150的样本,已知从学生中抽取的人数为135,那么该学校的教师人数是( )
A.15 | B.200 | C.240 | D.2160 |
为了解某校高三学生的视力情况,随机地
抽查了该校100名高三学生的视力情况,
得到频率分布直方图,如右,由于不慎将
部分数据丢失,但知道前4组的频数成等
比数列,后6组的频数成等差数列,设最
大频率为a,视力在4.6到5.0之间的
学生数为b,则a, b的值分别为( )
A.0.27, 78 | B.0.27, 83 |
C.2.7, 78 | D.2.7, 83 |
经销商经销某种农产品,在一个销售季度内,每售出t该产品获利润元,未售出的产品,每t亏损元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。经销商为下一个销售季度购进了t该农产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内销商该农产品的利润。
(1)将表示为的函数;(2)根据直方图估计利润不少于57000元的概率.
某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.
统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图所示,规定不低于60分为及格,则及格人数是 。
由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料,算得,,, .
(Ⅰ)求所支出的维修费对使用年限的线性回归方程;
(Ⅱ)判断变量与之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程中,,,其中,为
样本平均值,线性回归方程也可写为.
(本小题满分12分)从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组、第二组;…第八组,右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(I)求第六组、第七组的频率并补充完整频率分布直方图;
(II)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率;
(III)从最后三组中任取3名学生参加学校篮球队,用表示从第八组中取到的人数,求的分布列及其数学期望。
(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
甲 |
80 |
81 |
93 |
72 |
88 |
75 |
83 |
84 |
乙 |
82 |
93 |
70 |
84 |
77 |
87 |
78 |
85 |
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为,求的分布列及数学期望.
(参考数据:,
)
成都市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的则被淘汰。若现有500人参加测试,学生成绩的频率分布直方图如下:
(I)求获得参赛资格的人数;
(II)根据频率直方图,估算这500名学生测试的平均成绩;
(III)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.
利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第4列的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是( )
A.584 | B.114 | C.311 | D.160 |
为了了解小学五年级学生的体能情况,抽取了实验小学五年级部分学生进行踢毽子测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是,第一小组的频数是.
(Ⅰ)求第四小组的频率和参加这次测试的学生人数;
(Ⅱ)在这次测试中,问学生踢毽子次数的中位数落在第几小组内?
(Ⅲ)在这次跳绳测试中,规定跳绳次数在以上的为优秀,试估计该校此年级跳绳成绩的优秀率是多
少?
(本小题满分12分)贵阳市某中学高三第一次摸底考试中名学生数学成绩的频率分布直方图如图所示,其中成绩分组区间是,,,,.
(Ⅰ)求图中的值;
(Ⅱ)根据频率分布直方图,估计这名学生数学成绩的平均分;
(Ⅲ)若这名学生数学成绩某些分数段的人数()与语文成绩相应分数段的人数()之比如下表所示,求语文成绩在之外的人数.
某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某3个月的月销售量与当月平均气温,其数据如下表:
月平均气温(°C) |
11 |
13 |
12 |
月销售量y(件) |
25 |
30 |
26 |
由表中数据能算出线性回归方程为 .(参考公式:)
某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段 |
[50,70) |
[70,90) |
[90,110) |
[110,130) |
[130,150) |
总计 |
频数 |
|
|
|
b |
|
|
频率 |
a |
0.25 |
|
|
|
|
(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.
试题篮
()