在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,,AD=2,AB= AF=2EF=l,点P在棱DF上.
(1)若P为DF的中点,求证:BF//平面ACP
(2)若二面角D-AP-C的余弦值为,求PF的长度.
已知两条不重合的直线m、n和两个不重合的平面、,有下列命题:
①若m⊥n,m⊥,则n∥;
②若m⊥,n⊥,m∥n,则∥;
③若m、n是两条异面直线,m,n,m∥,n∥,则∥;
④若⊥,∩=m,n,n⊥m,则n⊥.其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
如图,在正方体ABCD﹣A1B1C1D1中,AA1=2,E为AA1的中点,O是BD1的中点.
(Ⅰ)求证:平面A1BD1⊥平面ABB1A1;
(Ⅱ)求证:EO∥平面ABCD.
如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且,
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
若P两条异面直线l,m外的任意一点,则( )
A.过点P有且仅有一条直线与l,m都平行 |
B.过点P有且仅有一条直线与l,m都垂直 |
C.过点P有且仅有一条直线与l,m都相交 |
D.过点P有且仅有一条直线与l,m都异面 |
如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.
(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.
试题篮
()