优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平行线法
高中数学

(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.

(1)求证:CF∥平面AEB1;
(2)求证:平面AEB1⊥平面ABB1A1

  • 题型:未知
  • 难度:未知

如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知直四棱柱的底面是菱形,且为棱的中点为线段的中点.

(1)求证:直线
(2)求证:

  • 题型:未知
  • 难度:未知

下图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求与平面所成的角的正弦值;

  • 题型:未知
  • 难度:未知

如图,四棱锥中,四边形是正方形,若分别是线段的中点.

(1)求证:||底面
(2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。

  • 题型:未知
  • 难度:未知

是直线上的两点,,且直线与直线的角,则两点间的距离是_______.

  • 题型:未知
  • 难度:未知

设a,b,c是空间三条直线,是空间两个平面,则下列命题中,逆命题不成立的是(   )

A.当c⊥时,若c⊥,则
B.当时,若b⊥,则
C.当,且c是a在内的射影时,若b⊥c,则a⊥b
D.当,且时,若c∥,则b∥c
  • 题型:未知
  • 难度:未知

在四棱锥中,平面,底面为直角梯形,的中点.

(1)求证:平面
(2)求直线与平面所成角的正切值.

  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:

(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.

  • 题型:未知
  • 难度:未知

若P两条异面直线l,m外的任意一点,则( )

A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
C.过点P有且仅有一条直线与l,m都相交
D.过点P有且仅有一条直线与l,m都异面
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.

(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面

(1)若的中点.证明:平面
(2)若二面角的余弦值为,试求的值.

  • 题型:未知
  • 难度:未知

如图,在正方体ABCD-A1B1C1D1中.
 
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D; 
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.

  • 题型:未知
  • 难度:未知

高中数学平行线法试题