在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。
(Ⅰ)若G为FC的中点,证明:AF//平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值。
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD
(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.
如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.则下列命题中真命题的个数是( )
①存在点,使得//平面
②存在点,使得平面
③对于任意的点,平面平面
④对于任意的点,四棱锥的体积均不变
A.0个 |
B.1个 |
C.2个 |
D.3个 |
如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB; ②OC⊥平面PAC;
③MO∥平面PAC; ④平面PAC⊥平面PBC.
其中正确的命题是( ).
A.①② B.①③ C.③④ D.②④
设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交
④若l∥α,α⊥β,则l⊥β或lβ
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
若P两条异面直线l,m外的任意一点,则( )
A.过点P有且仅有一条直线与l,m都平行 |
B.过点P有且仅有一条直线与l,m都垂直 |
C.过点P有且仅有一条直线与l,m都相交 |
D.过点P有且仅有一条直线与l,m都异面 |
如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.
(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.
试题篮
()