优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平行线法
高中数学

是两条不同的直线,是三个不同的平面,有以下四个命题:
  ②   ③   ④
其中正确的命题是( )

A.①④ B.②③ C.①③ D.②④
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。

(Ⅰ)若G为FC的中点,证明:AF//平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值。

  • 题型:未知
  • 难度:未知

已知直线l,m与平面满足,则有(     )

A. B. C. D.
  • 题型:未知
  • 难度:未知

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥平面中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD
(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.

  • 题型:未知
  • 难度:未知

如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.则下列命题中真命题的个数是(  )
 
①存在点,使得//平面         
②存在点,使得平面
③对于任意的点,平面平面 
④对于任意的点,四棱锥的体积均不变

A.0个
B.1个
C.2个
D.3个
  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;      ②OC⊥平面PAC;
③MO∥平面PAC;      ④平面PAC⊥平面PBC.
其中正确的命题是( ).

A.①②       B.①③       C.③④        D.②④

  • 题型:未知
  • 难度:未知

设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α         
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交    
④若l∥α,α⊥β,则l⊥β或lβ

  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 题型:未知
  • 难度:未知

在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:

(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.

  • 题型:未知
  • 难度:未知

若P两条异面直线l,m外的任意一点,则( )

A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
C.过点P有且仅有一条直线与l,m都相交
D.过点P有且仅有一条直线与l,m都异面
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.

(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面

(1)若的中点.证明:平面
(2)若二面角的余弦值为,试求的值.

  • 题型:未知
  • 难度:未知

高中数学平行线法试题