如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:平面;
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD,PB=PD,⊥,⊥,,分别是,的中点,连结.
求证:(1)∥平面;
(2)⊥平面.
如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示.
(1)求证:平面;
(2)求平面与平面所成的锐二面角的余弦值;
(3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.
(本小题满分13分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.
(1)求证:;
(2)求证:平面;
(3)求二面角的余弦值.
如图,在四棱锥中,底面,底面是梯形,其中,,与交于点,是边上的点,且,已知,,.
(1)求平面与平面所成锐二面角的正切;
(2)已知是上一点,且平面,求的值.
(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.
(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.
如图,在长方体中,点在棱的延长线上,且.
(Ⅰ)求证://平面 ;
(Ⅱ)求证:平面平面;
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,是的中点.
(1)求证:∥平面;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
试题篮
()