优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

若圆与圆相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是       

  • 题型:未知
  • 难度:未知

直线与圆相交于

A.B两点(其中是实数),且是直角三角形(O是坐标原点),则点P与点之间距离的最小值为()
A
B. C. D.
  • 题型:未知
  • 难度:未知

如图,,过曲线上一点的切线,与曲线也相切于点,记点的横坐标为

(1)用表示切线的方程;
(2)用表示的值和点的坐标;
(3)当实数取何值时,
并求此时所在直线的方程。

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;
(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

(本小题满分12分)一动圆与已知相外切,与相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若A(0,1),轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当||=||时,求m的取值范围.

  • 题型:未知
  • 难度:未知

双曲线的离心率是2,则的最小值为

A. B. C.2 D.1
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点<
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线的斜率的取值范围是                

  • 题型:未知
  • 难度:未知

双曲线的离心率是2,则的最小值为

A. B. C.2 D.1
  • 题型:未知
  • 难度:未知

C.(选修4—4:坐标系与参数方程)
若两条曲线的极坐标方程分别为,它们相交于两点,求线段的长.

来源:盐城市20092010学年度高三年级第三次调研考试
  • 题型:未知
  • 难度:未知

是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知双曲线的右焦点为,则该双曲线的渐近线方程为       

来源:
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.

来源:
  • 题型:未知
  • 难度:未知

过直线上的一点P作圆的两条切线为切点,当直线关于直线对称时,       

来源:
  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题