已知过定点,圆心在抛物线:上运动,为圆在轴上所截得的弦.
⑴当点运动时,是否有变化?并证明你的结论;
⑵当是与的等差中项时,
试判断抛物线的准线与圆的位置关系,
并说明理由。
如图,所在的平面和四边形所在的平面垂直,且,,,,,则点在平面内的轨迹是 ( )
A.圆的一部分 |
B.椭圆的一部分 |
C.双曲线的一部分 |
D.抛物线的一部分 |
(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
(本小题满分12分)
已知点,点在轴上,点在轴的正半轴上,点在直线上,且
满足.
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)设、为轨迹上两点,且>1, >0,,求实数,
使,且.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
(本小题满分13分)如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点P在BC边上移动,线段OP的垂直平分线交y轴于点E,点M满足
(Ⅰ)求点M的轨迹方程;
(Ⅱ)已知点F(0,),过点F的直线l交点M的轨迹于Q、R两点,且求实数的取值范围.
试题篮
()