优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

(本小题满分12分)
已知分别是直线上的两个动点,线段的长为
的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,证明:为定值.

  • 题型:未知
  • 难度:未知

如图,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的一个焦点是 F ( 1 , 0 ) O 为坐标原点。
               image.png

(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点 F 的直线 l 交椭圆于 A B 两点,若直线 l 绕点 F 任意转动,值有 | O A | 2 + | O B | 2 < | A B | 2 ,求 a 的取值范围。

来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

若直线 3 x + 4 y + m = 0 与圆 x = 1 + cos θ y = 2 + sin θ ( θ 为参数)没有公共点,则实数 m 的取值范围是.

来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

双曲线 x 2 a 2 + y 2 b 2 = 1 ( a > 0 , b > 0 ) 的两个焦点为 F 1 , F 2 ,若 P 为其上一点,且 P F 1 = 2 P F 2 ,则双曲线离心率的取值范围为( )

A. (1,3) B. (1,3] C. (3,+ ) D. [ 3 , + )
来源:2008年高考福建卷理科数学试题
  • 题型:未知
  • 难度:未知

过抛物线 x 2 = 2 p y p > 0 的焦点 F 作倾角为 30 ° 的直线,与抛物线分别交于 A , B 两点( A y 轴左侧),则 A F F B =

来源:2008年高考江西卷理科数学试题
  • 题型:未知
  • 难度:未知

已知 m , n 是两条不同直线, α , β , γ 是三个不同平面,下列命题中正确的是(  )

A. m / / α , n / / α ,则 m / / n B. α γ , β γ ,则 α / / β
C. m / / α , m / / β ,则 α / / β D. m α , n α ,则 m / / n
来源:2008年高考安徽卷理科数学试题
  • 题型:未知
  • 难度:未知

A B C 是等腰三角形, A B C = 120 ° ,则以 A , B 为焦点且过点 C 的双曲线的离心率为(

A. 1 + 2 2 B. 1 + 3 2 C. 1 + 2 D. 1 + 3
来源:2008年高考全国卷Ⅱ文科数学试题
  • 题型:未知
  • 难度:未知

曲线 y = x e x + 2 x + 1 在点(0,1)处的切线方程为.

来源:2009年高考宁夏文科数学试题第13题
  • 题型:未知
  • 难度:未知

如图,已知 A B C 的两条角平分线 A D C E 相交于 H B = 60 ° F A C 上,且 A E = A F .
image.png

(Ⅰ)证明: B D H E 四点共圆;
(Ⅱ)证明: C E 平分 D E F .

来源:2009年高考宁夏卷理科数学第22题
  • 题型:未知
  • 难度:未知

已知点C在圆O的直径BE的延长线上,CA与圆O相切于点A,∠ACB的平分线分别交AB,AE于点D,F,则∠ADF=    

来源:高三模拟试题
  • 题型:未知
  • 难度:未知

选修4-1:几何证明选讲
如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.
求证:(1)
(2)

来源:高三模拟试题
  • 题型:未知
  • 难度:未知

选修4-4 :坐标系与参数方程
已知圆方程为.
(1)求圆心轨迹的参数方程
(2)点是(1)中曲线上的动点,求的取值范围.

  • 题型:未知
  • 难度:未知

已知平面内两定点,动点满足条件:,设点的轨迹是曲线为坐标原点。
(I)求曲线的方程;
(II)若直线与曲线相交于两不同点,求的取值范围;
(III)(文科做)设两点分别在直线上,若,记 分别为两点的横坐标,求的最小值。
(理科做)设两点分别在直线上,若,求面积的最大值。

  • 题型:未知
  • 难度:未知

设抛物线的准线与轴交于点,焦点为;椭圆 为焦点,离心率
(I)当时,①求椭圆的标准方程;②若直线与抛物线交于两点,且线段 恰好被点平分,设直线与椭圆交于两点,求线段的长;
(II)(仅理科做)设抛物线与椭圆的一个交点为,是否存在实数,使得的边长是连续的自然数?若存在,求出这样的实数的值;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知


已知椭圆的对称点落在直线)上,且椭圆C的离心率为
(1)求椭圆C的方程;
(2)设A(3,0),MN是椭圆C上关于x轴对称的任意两点,连结AN交椭圆于另一点E,求证直线MEx轴相交于定点.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题