优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展
高中数学

(本小题15分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验, 设表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.
(1)求随机变量的分布列及的数学期望
(2)记“不等式的解集是实数集R”为事件A,求事件A发生的概率

  • 题型:未知
  • 难度:未知

2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断. 5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进.在5月13日,仍时有较强余震发生,天气状况也不利于空中航行. 已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是,从空中抵达灾区的概率是
(1)求在5月13日恰有1支队伍抵达灾区的概率;
(2)求在5月13日抵达灾区的队伍数的数学期望.

  • 题型:未知
  • 难度:未知

心理学家分析发现视觉和空间能力与性别有关, 某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题, 让各位同学自由选择一道题进行解答.选题情况如下表:(单位: 人)

(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后, 甲每次解答一道几何题所用的时间在5—7分钟, 乙每次解答一道几何题所用的时间在6—8分钟, 现甲、 乙各解同一道几何题, 求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女生被抽到的人数为X, 求X的分布列及数学期望E (X).
附表及公式

  • 题型:未知
  • 难度:未知

(本小题满分13分)把一颗质地均匀,四个面上分别标有复数为虚数单位)的正四面体玩具连续抛掷两次,第一次出现底面朝下的复数记为,第二次出现底面朝下的复数记为
(1)用表示“”这一事件,求事件的概率
(2)设复数的实部为,求的分布列及数学期望.

  • 题型:未知
  • 难度:未知

株洲市某中学利用周末组织教职员工进行了一次秋季登石峰山健身的活动,有人参加,现将所有参加人员按年龄情况分为等七组,其频率分布直方图如下图所示.已知之间的参加者有8人.

(1)求之间的参加者人数
(2)已知之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?
(3)组织者从之间的参加者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望

  • 题型:未知
  • 难度:未知

乒乓球台面被球网分成甲、乙两部分,如图,
甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,队员小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分13分)在一次抽奖活动中,有甲、乙等7人获得抽奖的机会。抽奖规则如下:主办方先从7人中随机抽取两人均获奖1000元,再从余下的5人中随机抽取1人获奖600元,最后还从这5人中随机抽取1人获奖400元。
(Ⅰ)求甲和乙都不获奖的概率;
(Ⅱ)设X是甲获奖的金额,求X的分布列和均值

  • 题型:未知
  • 难度:未知

为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)为了分流地铁高峰的压力,市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:

乘坐里程(单位:



票价(单位:元)



 
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,甲、乙乘车超过公里且不超过公里的概率分别为 .
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;
(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.

  • 题型:未知
  • 难度:未知

为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

  • 题型:未知
  • 难度:未知

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)






频数






赞成人数






(I)由以上统计数据填下面列联表并问是否有%的把握认为“月收入以为分界点”对“楼市限购令”的态度有差异;

 
月收入低于百元的人数
月收入低于百元的人数
合计
赞成


 
不赞成


 
合计
 
 
 

(II)若对月收入在的被调查人中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”人数为,求随机变量的分布列及数学期望.
参考数据:









  • 题型:未知
  • 难度:未知

(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,
每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测
结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测
出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).

  • 题型:未知
  • 难度:未知

(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为
(Ⅰ)求的值;
(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。

  • 题型:未知
  • 难度:未知

(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题