优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展
高中数学

(本小题满分12分)根据公安部最新修订的《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一的部分理论)的考试.已知李先生已通过《科目一》的考试,且《科目一》的成绩不受《综合科》的影响,《综合科》三年内有5次预约考试的机会,一旦某次考试通过,便可领取驾驶证,不再参加以后的考试,否则就一直考到第5次为止.设李先生《综合科》每次参加考试通过的概率依次为0.5,0.6,0.7,0.8,0.9.
(1)求在三年内李先生参加驾驶证考试次数的分布列和数学期望;
(2)求李先生在三年内领到驾驶证的概率.

  • 题型:未知
  • 难度:未知

(本小题满分13分)甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为
(1)求甲队分别以获胜的概率;
(2)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.

  • 题型:未知
  • 难度:未知

【原创】(本小题满分14分)据报道,中国经济虽然有所下滑,但仍处于可控状态,从中央到地方对中国经济都抱有信心,因此股市的上证指数从去年的低点1974.38,涨到今天3286.07,为了了解股民的收益状况,某证券公司随机抽取位股民目前的战绩情况,数据显示这些股民的收益目前在所有股民中所占的百分数据,用茎叶图形式表示如下:

根据百分数据,成绩不低于80的为市场赢家.
(1)将频率视为概率,根据样本估计总体的思想,在股民中任选人,求至少有人为“市场赢家”的概率;
(2)从抽取的人中随机选取人,记表示“市场赢家”人数,求的分布列及期望.

  • 题型:未知
  • 难度:未知

某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.


(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,
能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好
的护眼习惯,并且在这9人中任取3人,记名次在的学生人数为,求的分布列和数学期望.
附:

  • 题型:未知
  • 难度:未知

如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第个竖直通道(从左至右)的概率为,某研究性学习小组经探究发现小弹子落入第层的第个通道的次数服从二项分布,请你解决下列问题.

(Ⅰ)试求的值,并猜想的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分布列及数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.
(1)求恰有两个黑球的概率; 
(2)记取出红球的个数为随机变量,求的分布列和数学期望

  • 题型:未知
  • 难度:未知

(本小题满分13分)国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:

空气质量等级


轻度污染
中度污染
重度污染
严重污染
AQI值范围
[0,50)
[50,100)
[100,150)
[150,200)
[200,300)
300及以上

 
下表是由天气网获得的全国东西部各6个城市2015年3月某时刻实时监测到的数据:

西部城市
AQI数值
东部城市
AQI数值
西安
108
北京
104
西宁
92
金门
42
克拉玛依
37
上海
x
鄂尔多斯
56
苏州
114
巴彦淖尔
61
天津
105
库尔勒
456
石家庄
93
AQI平均值:135
AQI平均值:90

 
(Ⅰ)求x的值,并根据上表中的统计数据,判断东、西部城市AQI数值的方差的大小关系(只需写出结果);
(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:


1
2
3
4
5
P
0.4
0.2
0.2
0.1
0.1

 
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望

  • 题型:未知
  • 难度:未知

(本小题满分12分)
右图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人

(I)求该专业毕业总人数N和90~95分数段内的人数
(II)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?
(III)在(II)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.

(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X的数学期望.

  • 题型:未知
  • 难度:未知

为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

  • 题型:未知
  • 难度:未知

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)






频数






赞成人数






(I)由以上统计数据填下面列联表并问是否有%的把握认为“月收入以为分界点”对“楼市限购令”的态度有差异;

 
月收入低于百元的人数
月收入低于百元的人数
合计
赞成


 
不赞成


 
合计
 
 
 

(II)若对月收入在的被调查人中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”人数为,求随机变量的分布列及数学期望.
参考数据:









  • 题型:未知
  • 难度:未知

(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,
每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测
结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测
出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).

  • 题型:未知
  • 难度:未知

(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为
(Ⅰ)求的值;
(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。

  • 题型:未知
  • 难度:未知

(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题