优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展 / 解答题
高中数学

(本小题满分12分)西安市某中学在每年的11月份都会举行“文化艺术节”,开幕式当天组织举行大型的文艺表演,同时邀请36名不同社团的社长进行才艺展示.其中有的社长是高中学生,的社长是初中学生,高中社长中有是高一学生,初中社长中有是初二学生.
(Ⅰ)若校园电视台记者随机采访3位社长,求恰有1人是高一学生且至少有1人是初中学生的概率;
(Ⅱ)若校园电视台记者随机采访3位初中学生社长,设初二学生人数为,求的分布列及数学期望

  • 题型:未知
  • 难度:未知

一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(Ⅰ)求取出的3个球编号都不相同的概率;
(Ⅱ)记为取出的3个球中编号的最小值,求的分布列与数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.
(Ⅰ)求恰有一个黑球的概率;
(Ⅱ)记取出红球的个数为随机变量,求的分布列和数学期望

  • 题型:未知
  • 难度:未知

(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图中作出这些数据的频率分布直方图;

(图中纵坐标1/300即,以此类推)
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月1日至10日中的某一
天到达该市,并停留2天,设是此人停留期间空气质量优良的天数,求的数学期望.

  • 题型:未知
  • 难度:未知

射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为,命中一次得3分;命中乙靶的概率为,命中一次得2分,若没有命中则得0分,用随机变量表示该射手一次测试累计得分,如果的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。
(1)如果该射手选择方案1,求其测试结束后所得分的分布列和数学期望E
(2)该射手选择哪种方案通过测试的可能性大?请说明理由。

  • 题型:未知
  • 难度:未知

【改编】(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站.其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站.记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查.
(1)求抽取的车站中不含佛山市内车站(包括三水南站和佛山西站)的概率;
(2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).

  • 题型:未知
  • 难度:未知

(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人

(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数
(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?
(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:

       态度
调查人群
应该取消
应该保留
无所谓
在校学生
2100人
120人

社会人士
600人


 
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在局以内(含局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求的分布列和期望.

  • 题型:未知
  • 难度:未知

为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).


(1)求样本容量和频率分布直方图中的的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3名学生参加“中国汉字听写大会”,设随机变量表示所抽取的3名学生中得分在内的学生人数,求随机变量的分布列及数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.

(1)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(2)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分13分)某工厂生产A,B两种型号的玩具,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种玩具各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100)
玩具A
8
12
40
32
8
玩具B
7
18
40
29
6

 
(Ⅰ)试分别估计玩具A、玩具B为正品的概率;
(Ⅱ)生产一件玩具A,若是正品可盈利40元,若是次品则亏损5元;生产一件玩具B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件玩具A和1件玩具B所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件玩具B所获得的利润不少于140元的概率.

  • 题型:未知
  • 难度:未知

(本小题满分12分)根据我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,人类可正常活动.某市环保局对该市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,由此得到样本的空气质量指数频率分布直方图.

(Ⅰ)若空气质量指数大于或等于15且小于35认为是良好的,求该市在这次监测中空气质量
为良好的天数,并根据频率分布直方图估计这一年度的空气质量指数的平均值;
(Ⅱ)如果空气质量指数不超过15,就认定空气质量为“优”,则从这一年的监测数据中随机
抽取3天的数值,其中达到“优”的天数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:

       态度
调查人群
应该取消
应该保留
无所谓
在校学生
2100人
120人

社会人士
600人


 
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.
已知三个年龄段的上网购物者人数成等差数列,求的值;
该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望.

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题