(本大题13分)设、为函数 图象上不同的两个点,
且 AB∥轴,又有定点 ,已知是线段的中点.
⑴ 设点的横坐标为,写出的面积关于的函数的表达式;
⑵ 求函数的最大值,并求此时点的坐标。
二次函数y=ax2+bx+c的图象如图2所示,则下列结论①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ x=0为方程ax2+bx+c=-2的一个解,其中正确的有 ( )
A.2个 | B.3个 | C.4个 | D.5个 |
经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga>1,则a的取值范围是(,1);
(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是 .
已知函数f(x)=2x2﹣(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.
记函数(,,均为常数,且).
(1)若,(),求的值;
(2)若,时,函数在区间上的最大值为,求.
若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为 .
试题篮
()