优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

.定义域为R的函数满足,且当时,,则当时,的最小值为(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知函数满足.
(1)求的解析式;
(2)对于(1)中得到的函数,试判断是否存在,使在区间上的值域为?若存在,求出;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知二次函数满足,且.
(1)求解析式
(2)当时,函数的图像恒在函数的图像的上方,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数
(1)若函数有两个零点,求的取值范围;
(2)若函数在区间上各有一个零点,求的取值范围.

  • 题型:未知
  • 难度:未知

设函数
(1)求函数上的值域;
(2)证明对于每一个,在上存在唯一的,使得
(3)求的值.

  • 题型:未知
  • 难度:未知

已知函数是奇函数.
(1)求m的值:
(2)设.若函数的图象至少有一个公共点.求实数a的取值范围.

  • 题型:未知
  • 难度:未知

设函数满足
(1)求证,并求的取值范围;
(2)证明函数内至少有一个零点;
(3)设是函数的两个零点,求的取值范围.

  • 题型:未知
  • 难度:未知

设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)证明:当时,数列在该区间上是递增数列;
(3)已知,是否存在非零整数,使得对任意,都有
 恒成立,若存在,求之;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知函数,h(x)=2alnx,.
(1)当a∈R时,讨论函数的单调性;
(2)是否存在实数a,对任意的,且,都有
恒成立,若存在,求出a的取值范围;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知在区间上是增函数.
(1)求实数的值组成的集合
(2)设关于的方程的两个非零实根为.试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知二次函数满足,且
(1)求的解析式;
(2)当时,方程有解,求实数的取值范围;
(3)设,求的最大值.

  • 题型:未知
  • 难度:未知

已知偶函数满足:当时,,当时,.
(Ⅰ).求表达式;
(Ⅱ).若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ).试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

  • 题型:未知
  • 难度:未知

已知函数.其中
(1)若函数的图像的一个公共点恰好在轴上,求的值;
(2)若是方程的两根,且满足,证明:当时,

  • 题型:未知
  • 难度:未知

已知二次函数.
(1)若对任意,且,都有,求证:关于的方程
有两个不相等的实数根且必有一个根属于
(2)若关于的方程上的根为,且,设函数的图象的对称轴方程为,求证:.

  • 题型:未知
  • 难度:未知

若函数有两个零点,其中,那么在两个函数值中   (    )

A.只有一个小于1 B.至少有一个小于1
C.都小于1 D.可能都大于1
  • 题型:未知
  • 难度:未知

高中数学二次剩余试题