已知函数f(x)=x2+2x+alnx(a∈R).
(1)当时a=﹣4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围.
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”
(1)已知二次函数(且),试判断是否为“局部奇函数”,并说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(3)若为定义域为上的“局部奇函数”,求实数的取值范围;
已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于( )
A.1 | B.2 | C.0 | D. |
已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则实数a的取值范围是( )
A.(4,+∞) | B.(-∞,4] |
C.(10,+∞) | D.(-∞,10] |
试题篮
()