(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).
。直线l2与函数的图象以及直线l1、l2与函数的图象
围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为
(1)求函数的解析式;
(2)若函数,判断是否存在极值,若存在,求出极值,若不存在,说明理由;
(本小题满分12分)已知二次函数f(x)满足:函数f(x+1)为偶函数,f(x)的最小值为-4,函数f(x)的图象与x轴交点为A、B,且AB=4,求二次函数的解析式.
已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:
(1)f(6)与f(4)
已知二次函数的二次项系数为a,且不等式f(x)>-2x的解集为(-1,3)。
(1)若方程有两个相等的实数根,求的解析式;
(2)若函数在区间内单调递减,求a的取值范围;
试题篮
()