已知二次函数(R,0).
(Ⅰ)当0<<时,(R)的最大值为,求的最小值.
(Ⅱ)如果[0,1]时,总有||.试求的取值范围.
(Ⅲ)令,当时,的所有整数值的个数为,求数列的前 项的和.
一次函数是上的增函数,,已知.
(1)求;
(2)若在单调递增,求实数的取值范围;
(3)当时,有最大值,求实数的值.
已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。
(1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0,使得f(x0)<2(x02+1)成立,求c的值。
已知直线为函数的图像,曲线C为二次函数的图像,直线与曲线C交于不同两点A,B
(I)当时,求弦AB的长;
(II)求线段AB中点的轨迹方程;
(III)试利用抛物线的定义证明:曲线C为抛物线.
二次函数f(x)=
(I)若方程f(x)=0无实数根,求证:b>0;
(II)若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-a)=;
(III)若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k,使得.
已知二次函数,不等式的解集为.
(1)求的解析式;
(2)若函数在上单调,求实数的取值范围;
(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.
设函数.
(1)求函数在上的值域;
(2)证明对于每一个,在上存在唯一的,使得;
(3)求的值.
已知二次函数(为常数,)的一个零点是.函数,设函数.
(Ⅰ)求的值,当时,求函数的单调增区间;
(Ⅱ)当时,求函数在区间上的最小值;
(Ⅲ)记函数图象为曲线C,设点是曲线C上不同的两点,点M为线段AB的中点,过点M作轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.
设二次函数在[-1,4]上的最大值为12,且关于x的不等式的解集为(0,5).
(1)求的解析式;
(2)若对任意的实数x都有恒成立,求实数m的取值范围.
已知函数,.
(1)若函数在上不具有单调性,求实数的取值范围;
(2)若.
(ⅰ)求实数的值;
(ⅱ)设,,,当时,试比较,,的大小.
试题篮
()