用数学归纳法证明,在验证当n=1时,等式左边应为
A.1 | B.1+a | C.1+a+a2 | D.1+a+a2+a3 |
用数学归纳法证明某命题时,左式为
在验证时,左边所得的代数式为( )
A. |
B. |
C. |
D. |
利用数学归纳法证明“”时,在验证成立时,左边应该是( )
A.1 | B. | C. | D. |
利用数学归纳法证明不等式<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了( )
A.1项 | B.k项 | C.2k-1项 | D.2k项 |
如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…)则在第n个图形中共有( )个顶点。
A.(n+1)(n+2) | B.(n+2)(n+3) | C. | D.n |
如图,在杨辉三角形中,斜线的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10, ,记此数列的前项之和为,则的值为( )
A.66 | B.153 | C.295 | D.361 |
已知为正偶数,用数学归纳法证明
时,若已假设为偶数时命题为真,则还需要用归纳假设再证( )
A.时等式成立 | B.时等式成立 |
C.时等式成立 | D.时等式成立 |
已知整数按如下规律排成一列:、、、、,,,,,,……,则第70个数对是( )
A. | B. | C. | D. |
利用数学归纳法证明“1+a+a2+…+an+1 =, (a≠1,n∈N)”时,在验证n=1成立时,左边应该是 ( )
A.1 | B.1+a | C.1+a+a2 | D.1+a+a2+a3 |
如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第34颗珠子的颜色是 ( )
A.白色 | B.白色的可能性大 |
C.黑色 | D.黑色的可能性大 |
试题篮
()