优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 解答题
高中数学

(本小题满分14分)在的展开式中,把叫做三项式系数.
(Ⅰ)当时,写出三项式系数的值;
(Ⅱ)二项式的展开式中,系数可用杨辉三角形数阵表示,如图:

时,类似杨辉三角形数阵表,请列出三项式的次系数列的数阵表;
(Ⅲ)求的值(可用组合数作答).

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在一个可以向下和向右方无限延伸的表格中,将正偶数按已填好的各个方格中的数字显现的规律填入各方格中.其中第行,第列的数记作,如

2
4
8
14
 
6
10
16
24
 
12
18
26
36
 
20
28
38
50
 
 
 
 
 
 

(Ⅰ)写出的值;
(Ⅱ)若的值;(只需写出结论)
(Ⅲ)设 (), 记数列的前项和为,求;并求正整数,使得对任意,均有

  • 题型:未知
  • 难度:未知

在数列{an}中,a1,an+1,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.

  • 题型:未知
  • 难度:未知

观察下列等式
                                     第一个式子
                              第二个式子
                      第三个式子
               第四个式子
照此规律下去
(Ⅰ)写出第个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想. 

  • 题型:未知
  • 难度:未知

(本题14分)某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.

(Ⅰ)求出
(Ⅱ)利用合情推理的“归纳推理思想”归纳出的关系式,
(Ⅲ)根据你得到的关系式求的表达式.

  • 题型:未知
  • 难度:未知

(本小题满分10分)已知多项式.
(Ⅰ)求的值;
(Ⅱ)试探求对一切整数n,是否一定是整数?并证明你的结论.

  • 题型:未知
  • 难度:未知

(本小题满分10分)设个正数满足).
(1)当时,证明:
(2)当时,不等式也成立,请你将其推广到)个正数的情形,归纳出一般性的结论并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

已知数列前项和
(1)试求
(2)猜想的表达式,并用数学归纳法证明猜想.

  • 题型:未知
  • 难度:未知

若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.

来源:
  • 题型:未知
  • 难度:未知

,其中为正整数.
(1)求的值;
(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.

  • 题型:未知
  • 难度:未知

给出四个等式:
1=1
1-4=-(1+2)
1-4+9=1+2+3
1-4+9-16=-(1+2+3+4)
……
(1)写出第5,6个等式,并猜测第n(n∈N*)个等式
(2)用数学归纳法证明你猜测的等式.

  • 题型:未知
  • 难度:未知

是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?

  • 题型:未知
  • 难度:未知

给出四个等式:





(1)写出第个等式,并猜测第)个等式;
(2)用数学归纳法证明你猜测的等式.

  • 题型:未知
  • 难度:未知

观察以下个等式:





照以上式子规律:
写出第个等式,并猜想第个等式;
用数学归纳法证明上述所猜想的第个等式成立.

  • 题型:未知
  • 难度:未知

用数学归纳法证明:

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法解答题