优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质 / 解答题
高中数学

已知函数(其中) ,点从左到右依次是函数图象上三点,且.
(1)证明: 函数上是减函数;
(2)求证:⊿是钝角三角形;
(3)试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.

来源:
  • 题型:未知
  • 难度:未知

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.
(1)判断函数是否是有界函数,请写出详细判断过程;
(2)试证明:设,若上分别以为上界,
求证:函数上以为上界;
(3)若函数上是以3为上界的有界函数,
求实数的取值范围.

  • 题型:未知
  • 难度:未知

为非负实数,函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数,并求出零点.

  • 题型:未知
  • 难度:未知

(本小题满分15分)设
(1)当时,求曲线处的切线的斜率;
(2)如果存在,使得成立,求满足上述条件的最大整数
(3)如果对于任意,都有成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分15分)已知函数,
(1)若,且的取值范围
(2)当时,恒成立,且的取值范围

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数为常数)。
(Ⅰ)函数的图象在点()处的切线与函数的图象相切,求实数的值;
(Ⅱ)设,若函数在定义域上存在单调减区间,求实数的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数,都有
成立,求的取值范围。

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

14分)某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,且出版的书可全部销售完. 经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;

  • 题型:未知
  • 难度:未知

已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明:
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围;
(3)当时,试比较的大小.

  • 题型:未知
  • 难度:未知

已知二次函数
(1)若试判断函数零点个数;
(2)若对任意的,且>0),试证明:
成立。
(3)是否存在,使同时满足以下条件:①对任意,且②对任意的,都有?若存在,求出的值,若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

已知函数满足0<<1。
(1)求的取值范围;
(2)若是偶函数且满足,当时,有,求 在上的解析式。

  • 题型:未知
  • 难度:未知

若非零函数对任意实数均有,且当时,
(1)求证:         (2)求证:为减函数
(3)当时,解不等式

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用万元满足,已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/万件.
(Ⅰ)将该产品的利润万元表示为促销费用万元的函数;
(Ⅱ)促销费用投入多少万元时,厂家的利润最大。

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质解答题