(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,.
(1)求证:平面;
(2)求证:平面;
(3)求四面体的体积.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求四棱锥的体积.
如图,四面体中,,,,平面平面,若四面体的四个顶点在同一个球面上,则该球的体积为( )
A. | B. | C. | D. |
如图,在三棱锥中,侧面与侧面均为边长为1的等边三角形,,为中点.
(Ⅰ)证明:平面;
(Ⅱ)证明:;
(Ⅲ)求三棱锥的体积.
【原创】如图,在四棱锥中,底面为直角梯形,且,, 若,
且侧面底面.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求三棱锥的体积.
【改编】如图,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,使得平面平面,得到如图所示的三棱锥.
(1)证明://平面;
(2)证明:平面;
(3)当时,求三棱锥的体积.
(本小题满分12分)如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:平面;
(Ⅱ)求出该几何体的体积;
(Ⅲ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置;若不存在,请说明理由.
如图所示,在边长为12的正方形 中,点在线段上,且,作 ,分别交于点, .作,分别交于点,.将该正方形沿折叠,使得与重合,构成如图的三棱柱.
(1)求证:平面;
(2)求四棱锥的体积.
如图所示,正方形与直角梯形所在平面互相垂直,,,.
(1)求证:平面;
(2)求证:平面;
(3)求四面体的体积.
(本小题满分12分)如图1所示,直角梯形,,,,、为线段、上的点,且,设,沿将梯形翻折,使平面平面(如图2所示).
(1)若以、、、为顶点的三棱锥体积记为,求的最大值及取最大值时的位置;
(2)在(1)的条件下,试在线段上的确定一点使得,并求直线与平面所成的角的正弦值.
试题篮
()