如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为xcm的内接圆柱.
(1)试用x表示圆柱的侧面积;
(2)当x为何值时,圆柱的侧面积最大.
在如图所示的多面体ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,,F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.
如图,矩形 ABCD 中,BC=2,AB=1,PA丄平面 ABCD,BE∥PA,BE=PA,F 为PA的中点.
(I)求证:DF∥平面PEC
(II)记四棱锥C一PABE的体积为V1,三棱锥P﹣ACD的 体积为V2,求的值.
如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN∥平面A′ACC′;
(Ⅱ)求三棱锥A′﹣MNC的体积.
(椎体体积公式V=Sh,其中S为底面面积,h为高)
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由。
已知某几何体的俯视图是如图1所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积;
(Ⅱ)求该几何体的侧面积.
试题篮
()