优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 表面展开图
高中数学

(本小题满分12分) 在三棱柱中,侧面为矩形,,D为的中点,BD与交于点O,侧面

(1)证明:
(2)若,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,已知棱柱的底面是菱形,且面ABCD,为棱的中点,为线段的中点.

(1)求证:平面平面
(2)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱底面ABC,AB⊥BC,D为AC的中点,

(1)求证:平面
(2)设BC=3,求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,四边形为菱形,平面中点.

(Ⅰ)求证:平面平面
(Ⅱ)若,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有(  )

image.png

A. 14斛 B. 22斛 C. 36斛 D. 66斛
来源:2015年全国普通高等学校招生统一考试文科数学
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.

(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

  • 题型:未知
  • 难度:未知

(本题小满分12分)
如图,直三棱柱中,分别是的中点,
(1)证明:平面
(2)求异面直线所成角的大小;
(3)当时,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图①,在边长为1的等边中,分别是边上的点,的中点,交于点,将沿折起,得到如图②所示的三棱锥,其中

(1) 证明://平面
(2) 证明:平面
(3) 当时,求三棱锥的体积

  • 题型:未知
  • 难度:未知

如图,已知四边形都是菱形,平面和平面互相垂直,且

(Ⅰ)求证:
(Ⅱ)求四面体的体积.

  • 题型:未知
  • 难度:未知

如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,.

(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在多面体中,已知是边长为1的正方形,且均为正三角形,,则多面体的体积为(  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,平面ABC,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.

(1)求证:⊥平面
(2)求二面角的余弦值;
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥中,侧面为等边三角形,底面是等腰梯形,且的中点,的中点,且

(1)求证:平面平面
(2)求证:平面
(3)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱ABC­A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.

(1)求证:DE∥平面ABC;
(2)求三棱锥E­BCD的体积.

  • 题型:未知
  • 难度:未知

高中数学表面展开图试题