优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 表面展开图
高中数学

已知某几何体的三视图如图所示,则该几何体的表面积等于(  )

A. B.160 C. D.
  • 题型:未知
  • 难度:未知

如图,已知四边形都是菱形,平面和平面互相垂直,且

(Ⅰ)求证:
(Ⅱ)求四面体的体积.

  • 题型:未知
  • 难度:未知

利用一个球体毛坯切削后得到一个四棱锥,其中底面四边形是边长为的正方形,,且平面,则球体毛坯体积的最小值应为      

  • 题型:未知
  • 难度:未知

直角梯形,满足,现将其沿折叠成三棱锥,当三棱锥体积取最大值时其外接球的体积为(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

平面四边形中,,将其沿对角线折成四面体,使平面平面,若四面体的顶点在同一个球面上,则该球的体积为 (   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

如果圆柱轴截面的周长为定值,则其体积的最大值为(  )

A.p B.p C.p D.p
  • 题型:未知
  • 难度:未知

长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是( )

A.20π B.25π C.50π D.200π
  • 题型:未知
  • 难度:未知

如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,.

(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱底面ABC,AB⊥BC,D为AC的中点,

(1)求证:平面
(2)设BC=3,求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱ABC­A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.

(1)求证:DE∥平面ABC;
(2)求三棱锥E­BCD的体积.

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.

(1)求证:平面ABE⊥平面B1BCC1
(2)求证:C1F∥平面ABE;
(3)求三棱锥E —ABC的体积.

  • 题型:未知
  • 难度:未知

已知矩形ABCD,ED⊥平面ABCD,EF//DC.EF=DE=AD==2,O为BD中点.
(Ⅰ)求证:EO//平面BCF;
(Ⅱ)求几何体ABCDEF的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图:是直径为的半圆,为圆心,上一点,
.,且的中点,的中点,上一点,且.

(Ⅰ)求证: 面⊥面
(Ⅱ)求证:∥平面
(Ⅲ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,矩形中,对角线的交点为⊥平面上的点,且
(I)求证:⊥平面
(II)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

高中数学表面展开图试题