已知函数的图象在处的切线方程为,其中有e为自然对数的底数。
(1)求的值;
(2)当时,证明;
(3)对于定义域为D的函数若存在区间时,使得时,的值域是。则称是该函数的“保值区间”。设+,问函数是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由。
(本小题满分12分)已知函数,其中为常数,且.
(Ⅰ)若曲线在点处的切线与直线垂直,求的值;
(Ⅱ)若函数在区间上的最小值为,求的值.
【原创】已知函数=().
(Ⅰ)当=1时,求函数在(1,0)点的切线方程;
(Ⅱ)当>1时,>0,求实数的取值范围.
已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.
已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当时图象是否存在不同的两点A、B具有(2)问中所得出的结论.
(本小题满分13分)已知函数.
(1)若函数的图象在处的切线斜率为1,求实数a的值;
(2)若函数在上是减函数,求实数a的取值范围.
已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:
已知函数(k为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值及的单调区间;
(2)设其中为的导函数,证明:对任意,.
设函数.
(1)若函数在处有极值,求函数的最大值;
(2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;
(3)证明:不等式.
试题篮
()