如图,,,,四点共圆,与的延长线交于点,点在的延长线上.
(1)若,,求的值;
(2)若∥,求证:线段,,成等比数列.
已知函数(,)的图象恒过定点,椭圆:
()的左,右焦点分别为,,直线经过点且与⊙:相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆在轴上方的交点为,且,求内切圆的方程.
如图,在正四棱锥中,底面是边长为2的正方形,侧棱,为的中点,是侧棱上的一动点。
(1)证明:;
(2)当直线时,求三棱锥的体积.
在一个盒子中,放有标号分别为,,的三个小球,现从这个盒子中,有放回地先后抽得两个小球的标号分别为、,设为坐标原点,设的坐标为.
(1)求的所有取值之和;
(2)求事件“取得最大值”的概率.
已知函数f(x)=lnx,g(x)=k·.
(I)求函数F(x)= f(x)- g(x)的单调区间;
(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围;
(Ⅲ)设正实数a1,a2,a3,,an满足a1+a2+a3++an=1,
求证:ln(1+)+ln(1+)++ln(1+)>.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且==.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.
如图,矩形A1A2A′2A′1,满足B、C在A1A2上,B1、C1在A′1A′2上,且BB1∥CC1∥A1A′1,A1B=CA2=2,BC=2,A1A′1=,沿BB1、CC1将矩形A1A2A′2A′1折起成为一个直三棱柱,使A1与A2、A′1与A′2重合后分别记为D、D1,在直三棱柱DBC-D1B1C1中,点M、N分别为D1B和B1C1的中点.
(I)证明:MN∥平面DD1C1C;
(Ⅱ)若二面角D1-MN-C为直二面角,求的值.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且==.
(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+++ +与了Sn的大小.
已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)= ·.
(I)求f(x)的最小正周期与单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若A=,b=f(),ΔABC的面积为,求a的值
如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
已知点,,动点的轨迹曲线满足,,过点的直线交曲线于、两点.
(1)求的值,并写出曲线的方程;
(2)求△面积的最大值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
试题篮
()