优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知公差不为零的等差数列中,,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令),求数列的前项和.

  • 题型:未知
  • 难度:未知

已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。

  • 题型:未知
  • 难度:未知

甲、乙两个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格。已知甲,乙两人审核过关的概率分别为,审核过关后,甲、乙两人文化测试合格的概率分别为
(1)求甲,乙两人至少有一人通过审核的概率;
(2)设表示甲,乙两人中获得自主招生入选资格的人数,求的数学期望.

  • 题型:未知
  • 难度:未知

已知函数
(1)若的最大值和最小值;
(2)若的值。

  • 题型:未知
  • 难度:未知

已知函数.
(1)求的最小正周期;
(2)在中,分别是ABC的对边,若的面积为,求的值.

  • 题型:未知
  • 难度:未知

(1)设,试比较的大小;
(2)是否存在常数,使得对任意大于的自然数都成立?若存在,试求出的值并证明你的结论;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成。
(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;
(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。试从至少正确完成2题的概率分析比较两位考生的实验操作能力.

  • 题型:未知
  • 难度:未知

在直角坐标系内,直线的参数方程为为参数.以为极轴建立极坐标系,圆的极坐标方程为.判断直线和圆的位置关系.

  • 题型:未知
  • 难度:未知

设满足以下两个条件的有穷数列阶“期待数列”:
;②
(1)若等比数列 ()阶“期待数列”,求公比
(2)若一个等差数列既是 ()阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为
(ⅰ)求证:
(ⅱ)若存在使,试问数列能否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

已知函数,().
(1)求函数的极值;
(2)已知,函数,判断并证明的单调性;
(3)设,试比较,并加以证明.

  • 题型:未知
  • 难度:未知

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

  • 题型:未知
  • 难度:未知

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得每年改造生态环境总费用的22%。
(1)若,请你分析能否采用函数模型y作为生态环境改造投资方案;
(2)若取正整数,并用函数模型y作为生态环境改造投资方案,请你求出的取值.

  • 题型:未知
  • 难度:未知

已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.

(1)求证:平面A1BC⊥平面ABB1A1
(2)若,AB=BC=2,P为AC中点,求三棱锥的体积。

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,以轴为始边,两个锐角,的终边分别与单位圆相交于A,B 两点.

(Ⅰ)若,求的值;
(Ⅱ)若角的终边与单位圆交于点,设角的正弦线分别为
,试问:以作为三边的长能否构成一个三角形?若能,请加以证明;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

已知向量
(Ⅰ)用含x的式子表示
(Ⅱ)求函数的值域;
(Ⅲ)设,若关于x的方程有两个不同的实数解,求实数的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题