为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
|
患病 |
未患病 |
总计 |
没服用药 |
20 |
30 |
50 |
服用药 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)= P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求的期望E()和方差D().
参考公式:(其中)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
3.845 |
6.635 |
7.879 |
在1,2,3,…,9这9个自然数中,任取3个数,
(1)记Y表示“任取的3个数中偶数的个数”,求随机变量Y的分布列及其期望;
(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有这两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).
已知函数(),该函数所表示的曲线上的一个最高点为,由此最高点到相邻的最低点间曲线与x轴交于点(6,0)。
(1)求函数解析式;
(2)求函数的单调区间;
(3)若,求的值域。
已知,。
(1)求的振幅,最小正周期,对称轴,对称中心。
(2)说明是由余弦曲线经过怎样变换得到。
如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?
已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
试题篮
()