在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,并在已被问卷调查的居民中随机抽选部分居民参加“幸福职业”或“幸福愿景”的座谈会,被邀请的居民只能选择其中一场座谈会参加.已知A小区有1人,B小区有3人收到邀请并将参加一场座谈会,若A小区已经收到邀请的人选择参加“幸福愿景”座谈会的概率是, B小区已经收到邀请的人选择参加“幸福愿景”座谈会的概率是.
(Ⅰ)求A、B两个小区已收到邀请的人选择“幸福愿景”座谈会的人数相等的概率;
(Ⅱ)在参加“幸福愿景”座谈会的人中,记A、B两个小区参会人数的和为,试求的分布列和数学期望.
在正项等比数列中,, .
(1) 求数列的通项公式;
(2) 记,求数列的前n项和;
(3) 记对于(2)中的,不等式对一切正整数n及任意实数恒成立,求实数m的取值范围.
如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD的长为x米 .
(1)用x表示墙AB的长;
(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y(元)表示为x(米)的函数;
(3)当x为何值时,墙壁的总造价最低?
某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
分组 |
频数 |
频率 |
[0,1) |
10 |
0.10 |
[1,2) |
0.20 |
|
[2,3) |
30 |
0.30 |
[3,4) |
20 |
|
[4,5) |
10 |
0.10 |
[5,6] |
10 |
0.10 |
合计 |
100 |
1.00 |
(1)求右表中和的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是,乙能答对其中的道题.规定每次考试都从备选的道题中随机抽出道题进行测试,答对一题加分,答错一题(不答视为答错)减分,至少得分才能入选.
(1)求甲得分的数学期望;
(2)求甲、乙两人同时入选的概率.
试题篮
()