优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 DF ̂ 的中点.

(Ⅰ)设P是 CE ̂ 上的一点,且 AP BE ,求 CBP 的大小;

(Ⅱ)当 AB = 3 AD = 2 时,求二面角 E AG C 的大小.

image.png

来源:2017年全国统一高考数学试卷(山东卷)
  • 题型:未知
  • 难度:未知

设函数 f x = sin ω x π 6 + sin ω x π 2 ,其中 0 ω 3 ,已知 f π 6 = 0

(Ⅰ)求 ω

(Ⅱ)将函数 y = f x 的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 π 4 个单位,得到函数 y = g x 的图象,求 g x [ π 4 3 π 4 ] 上的最小值.

来源:2017年全国统一高考数学试卷(山东卷)
  • 题型:未知
  • 难度:未知

[选修4―4:坐标系与参数方程]

在直角坐标系 xOy中,直线 l 1 的参数方程为 x = 2 + t , y = kt , t为参数),直线 l 2 的参数方程为 x = - 2 + m , y = m k , m 为参数) .设 l 1l 2的交点为 P,当 k变化时, P的轨迹为曲线 C

(1)写出 C的普通方程;

(2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,设 l 3 ρ ( cos θ + sinθ ) - 2 = 0 Ml 3C的交点,求 M的极径.

来源:2017年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中,曲线 y = x 2 + mx - 2 与x轴交于A,B两点,点C的坐标为 ( 0 , 1 ) .当m变化时,解答下列问题:

(1)能否出现 AC BC 的情况?说明理由;

(2)证明过 ABC三点的圆在 y轴上截得的弦长为定值.

来源:2017年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 题型:未知
  • 难度:未知

如图,四面体ABCD中,△ABC是正三角形, AD = CD

image.png

(1)证明: AC BD

(2)已知△ACD是直角三角形, AB = BD .若E为棱BD上与D不重合的点,且 AE EC ,求四面体ABCE与四面体ACDE的体积比.

来源:2017年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 题型:未知
  • 难度:未知

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[ 10 15

[ 15 20

[ 20 25

[ 25 30

[ 30 35

[ 35 40

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为 Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出 Y 的所有可能值,并估计 Y 大于零的概率.

来源:2017年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 题型:未知
  • 难度:未知

设数列 a n 满足 a 1 + 3 a 2 + + ( 2 n - 1 ) a n = 2 n .

(1)求 a n 的通项公式;

(2)求数列 a n 2 n + 1 的前 n 项和.

来源:2017年全国统一高考文科数学试卷(全国Ⅲ卷)
  • 题型:未知
  • 难度:未知

( 1 + x ) n = a 0 + a 1 x + a 2 x 2 + + a n x n , n 4 , n N * .已知 a 3 2 = 2 a 2 a 4 .   

(1)求 n的值;    

(2)设 ( 1 + 3 ) n = a + b 3 ,其中 a , b N * ,求 a 2 - 3 b 2 的值.    

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

x R ,解不等式 | x |+|2 x - 1|>2 .   

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

在极坐标系中,已知两点 A ( 3 , π 4 ) , B ( 2 , π 2 ) ,直线l的方程为 ρ sin ( θ + π 4 ) = 3 .

(1)求 AB两点间的距离;    

(2)求点 B到直线 l的距离.    

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知矩阵 A = [ 3 1 2 2 ]

(1)求 A 2   

(2)求矩阵 A的特征值.   

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

定义首项为1且公比为正数的等比数列为"M-数列".   

(1)已知等比数列{ a n} ( n N * ) 满足: a 2 a 4 = a 5 , a 3 - 4 a 2 + 4 a 4 = 0 ,求证:数列{ a n}为"M-数列";    

(2)已知数列{ b n}满足: b 1 = 1 , 1 S n = 2 b n - 2 b n + 1 ,其中 S n为数列{ b n}的前 n项和.

①求数列{ b n}的通项公式;

②设 m为正整数,若存在"M-数列"{ c n} ( n N * ) ,对任意正整数 k ,当 km时,都有 c k b k c k + 1 成立,求 m的最大值.

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = ( x - a ) ( x - b ) ( x - c ) , a , b , c R f ' ( x ) 为f(x)的导函数.   

(1)若 a= b= c f(4)=8,求 a的值;    

(2)若 ab b= c , 且 fx)和 f ' ( x ) 的零点均在集合 { - 3 , 1 , 3 } 中,求 fx)的极小值;    

(3)若 a = 0 , 0 < b 1 , c = 1 ,且 fx)的极大值为 M,求证: M 4 27

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l ,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ ,并修建两段直线型道路PBQA .规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10,AC=6,BD=12(单位:百米).

(1)若道路PB与桥AB垂直,求道路PB的长;   

(2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;   

(3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的焦点为F 1(-1、0),F 2(1,0).过F 2作x轴的垂线l ,在x轴的上方,l与圆F 2: ( x - 1 ) 2 + y 2 = 4 a 2 交于点A ,与椭圆C交于点D.连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C于点E ,连结DF 1.已知DF 1= 5 2

(1)求椭圆 C的标准方程;    

(2)求点 E的坐标.    

来源:2019年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

高中数学解答题