给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求·的最小值.
已知函数,其中N*,aR,e是自然对数的底数.
(1)求函数的零点;
(2)若对任意N*,均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知k,mN*,k<m,且函数在R上是单调函数,探究函数的单调性.
已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.
(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.
已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。
(1)求的值及椭圆的标准方程;
(2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
已知函数,
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线在与处的切线互相平行,求证。
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
试题篮
()