优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知实数函数为自然对数的底数).
(Ⅰ)求函数的单调区间及最小值;
(Ⅱ)若对任意的恒成立,求实数的值;
(Ⅲ)证明:

  • 题型:未知
  • 难度:未知

已知函数为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,若对任意的恒成立,求实数的值;
(Ⅲ)求证:.

  • 题型:未知
  • 难度:未知

已知是关于的方程的根,
证明:(Ⅰ);(Ⅱ).

  • 题型:未知
  • 难度:未知

下面四个图案,都是由小正三角形构成,设第个图形中有个正三角形中所有小正三角形边上黑点的总数为.

图1         图2            图3                 图4
(Ⅰ)求出,,,;
(Ⅱ)找出的关系,并求出的表达式;
(Ⅲ)求证:().

  • 题型:未知
  • 难度:未知

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;

  • 题型:未知
  • 难度:未知

如图,F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值

  • 题型:未知
  • 难度:未知

设函数f(x)=x|x-a|+b,求证:f(x)为奇函数的充要条件是a2+b2=0.

  • 题型:未知
  • 难度:未知

已知三点P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为,求以为焦点且过点的双曲线的标准方程。

  • 题型:未知
  • 难度:未知

在直角坐标系上取两个定点,再取两个动点
(I)求直线交点的轨迹的方程;
(II)已知,设直线:与(I)中的轨迹交于两点,直线 的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

  • 题型:未知
  • 难度:未知

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

  • 题型:未知
  • 难度:未知

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为80千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)f ,可以达到最大,并求出最大值.

  • 题型:未知
  • 难度:未知

已知函数是大于零的常数.
(Ⅰ)当时,求的极值;
(Ⅱ)若函数在区间上为单调递增,求实数的取值范围;
(Ⅲ)证明:曲线上存在一点,使得曲线上总有两点,且成立.

  • 题型:未知
  • 难度:未知

已知向量
(1)求,并求上的投影
(2)若,求的值,并确定此时它们是同向还是反向?

  • 题型:未知
  • 难度:未知

设函数
(1)如果,求函数的单调递减区间;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)证明:当时,

  • 题型:未知
  • 难度:未知

某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元).当年产量不小于千件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

  • 题型:未知
  • 难度:未知

高中数学解答题