优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知函数
(1)若的值;
(2)求函数最小正周期及单调递减区间.

  • 题型:未知
  • 难度:未知

设函数,其对应的图像为曲线C;若曲线C过,且在点处的切斜线率
(1)求函数的解析式
(2)证明不等式.

  • 题型:未知
  • 难度:未知

已知,且
(1)求函数的单调增区间;
(2)证明无论为何值,直线与函数的图象不相切.

  • 题型:未知
  • 难度:未知

已知数列是等比数列,首项.
(l)求数列的通项公式;
(2)设数列,证明数列是等差数列并求前n项和.

  • 题型:未知
  • 难度:未知

已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:.
(Ⅰ)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(Ⅱ)若,函数上的上界是,求的取值范围;
(Ⅲ)若函数上是以为上界的有界函数, 求实数的取值范围.

  • 题型:未知
  • 难度:未知

为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克)与时间(小时)成正比;药物释放完毕后,的函数关系式为为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室.那从药物释放开始,至少需要经过多少小时后,学生才能回到教室?

  • 题型:未知
  • 难度:未知

设平面向量,已知函数上的最大值为6.
(Ⅰ)求实数的值;
(Ⅱ)若.求的值.

  • 题型:未知
  • 难度:未知

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

  • 题型:未知
  • 难度:未知

设等差数列的前n项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为,且,令.求数列的前n项和.

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.

  • 题型:未知
  • 难度:未知

在三棱锥中,是边长为的正三角形,平面⊥平面分别为的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

设椭圆的左、右焦点分别是,下顶点为,线段的中点为为坐标原点),如图.若抛物线轴的交点为,且经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设为抛物线上的一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;
(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和

  • 题型:未知
  • 难度:未知

定义在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题