如图,设椭圆:的离心率,顶点的距离为,为坐标原点.
(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆分别交于两点.
(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段的长;
(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
已知椭圆上的点到左右两焦点的距离之 和为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线交椭圆于两点.
(1)若轴上一点满足,求直线斜率的值;
(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
已知二次函数.
(1)若,试判断函数零点个数.
(2)若对且,,证明方程必有一个实数根属于.
(3)是否存在,使同时满足以下条件①当时,函数有最小值0;②对任意实数x,都有.若存在,求出的值,若不存在,请说明理由.
已知函数(其中且),是的反函数.
(1)已知关于的方程在上有实数解,求实数 的取值范围;
(2)当时,讨论函数的奇偶性和单调性;
(3)当,时,关于的方程有三个不同的实数解,求的取值范围.
对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.
(1)求闭函数的“好区间”;
(2)若为闭函数的“好区间”,求、的值;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
设为奇函数,为常数.
(Ⅰ)求的值;
(Ⅱ)判断在区间(1,+∞)的单调性,并说明理由;
(Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.
试题篮
()