将函数y=﹣x2+x(e∈[0,1])的图象绕点M(1,0)顺时针旋转θ角 (0<θ<)得到曲线C,若曲线C仍是一个函数的图象,则角θ的最大值为 .
在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当 时,平面π与圆锥面的交线为 .
已知圆C的参数方程为(θ为参数),若P是圆C与y轴正半轴的交点,以原点为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程.
在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为 .
工人师傅在如图1的一块矩形铁皮的中间画了一条曲线,并沿曲线剪开,将所得的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.对工人师傅所画的曲线,有如下说法:
(1)是一段抛物线;
(2)是一段双曲线;
(3)是一段正弦曲线;
(4)是一段余弦曲线;
(5)是一段圆弧.
则正确的说法序号是 .
试题篮
()