若复数 ,其中i为虚数单位,则 =( )
A. |
1+i |
B. |
1−i |
C. |
−1+i |
D. |
−1−i |
某几何体的三视图如图所示(单位: ),则该几何体的体积(单位: )是( )
A. |
|
B. |
|
C. |
|
D. |
|
在直角坐标系 中,曲线 的方程为 .以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
(1)求 的直角坐标方程;
(2)若 与 有且仅有三个公共点,求 的方程.
设抛物线 ,点 , ,过点 的直线 与 交于 , 两点.
(1)当 与 轴垂直时,求直线 的方程;
(2)证明: .
某家庭记录了未使用节水龙头 天的日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
未使用节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
使用了节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)在答题卡上作出使用了节水龙头 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
如图,在平行四边形 中, , ,以 为折痕将△ 折起,使点 到达点 的位置,且 .
(1)证明:平面 平面 ;
(2) 为线段 上一点, 为线段 上一点,且 ,求三棱锥 的体积.
已知数列 满足 , ,设 .
(1)求 ;
(2)判断数列 是否为等比数列,并说明理由;
(3)求 的通项公式.
试题篮
()