如图所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成530角,飞镖B与竖直墙壁成370角,两者相距为d,假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离?(sin370=0.6,cos370=0.8)
如图所示,某滑板爱好者在离地h=" 1.8" m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移=" 3" m。着地时由于存在能量损失,着地后速度变为v="4" m/s,并以此为初速沿水平地面滑行="8" m后停止,已知人与滑板的总质量m="60" kg。求:
(1)人与滑板离开平台时的水平初速度。
(2)人与滑板在水平地面滑行时受到的平均阻力大小。(空气阻力忽略不计,g取10)
从倾角为θ的足够长的A点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为,球落到斜面上前一瞬间的速度方向与斜面的夹角为,第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较、的大小
在倾角为的斜面顶端A处以速度水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求(1)小球从A运动到B处所需的时间和位移。(2) 从抛出开始计时,经过多长时间小球离斜面的距离达到最大?
如图所示,排球场总长为18m,设球网高度为2m,运动员站在网前3m处正对球网跳起将球水平击出。
(1)若击球高度为2.5m,为使球既不触网又不出界,求水平击球的速度范围;
(2)当击球点的高度为何值时,无论水平击球的速度多大,球不是触网就是越界?
(15分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)
(1)若球在球台边缘O点正上方高度为h1处以速度,水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x1。.
(2)若球在O点正上方以速度水平发出,恰好在最高点时越过球网落在球台的P2(如图虚线所示),求的大小.
(3)若球在O正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3,求发球点距O点的高度h3.
如图所示,半径R=0.80m的1/4光滑圆弧轨道竖直固定,过最低点的半径OC处于竖直位置.其右方有底面半径r=0.2m的转筒,转筒顶端与C等高,下部有一小孔,距顶端h=0.8m.转筒的轴线与圆弧轨道在同一竖直平面内,开始时小孔也在这一平面内的图示位置.今让一质量m=0.1kg的小物块自A点由静止开始下落后打在圆弧轨道上的B点,但未反弹,在瞬问碰撞过程中,小物块沿半径方向的分速度立刻减为O,而沿切线方向的分速度不变.此后,小物块沿圆弧轨道滑下,到达C点时触动光电装置,使转筒立刻以某一角速度匀速转动起来,且小物块最终正好进入小孔.已知A、B到圆心O的距离均为R,与水平方向的夹角均为θ=30°,不计空气阻力,g取l0m/s2.求:
(1)小物块到达C点时对轨道的压力大小 FC;
(2)转筒轴线距C点的距离L;
(3)转筒转动的角速度ω.
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离soc=L,求:
(1)小球通过最高点A时的速度vA.
(2)小球通过最低点B时,细线对小球的拉力.
(3)小球运动到A点或B点时细线断裂,小球滑落到斜面底边时到C点的距离若相等,则l和L应满足什么关系?
倾斜雪道的长为25 m,顶端高为15 m,θ=370,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v0=8 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g=10 m/s2)
试题篮
()