点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.
利用数形结合思想回答下列问题:
(1)数轴上表示2和10两点之间的距离是_________,数轴上表示2和-10的两点之间的距离是______.
(2)数轴上表示x和-2的两点之间的距离表示为____________.
(3)若x表示一个有理数, |x-1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.
(4)若x表示一个有理数,求|x-1|+|x-2|+|x-3|+|x-4|+……+|x-2014|+|x-2015|的最小值.
用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l的规律拼成一列图案:第n个图案中有白色纸片___________张.
如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )
A.8 | B.12 | C.16 | D.17 |
在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.
(1)仿照图1,在图2中补全672的“竖式”;
(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为 (用含a的代数式表示).
如图,在数轴上A点表示数﹣2,B点表示数6,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,则经过 秒,甲、乙两小球到原点的距离相等.
设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______.(填写所有正确结论的序号)①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;④存在实数x,使[x)-x=0.5成立。
探索规律:
观察由※组成的图案和算式,解答问题:
1+3=4=
1+3+5=9=
1+3+5+7=16=
1+3+5+7+9=25=
(1)请猜想1+3+5+7+9+ … +29= ;
(2)请猜想1+3+5+7+9+ … +(2n-1)+(2n+1)= ;
(3)请用上述规律计算:41+43+45+ …… +77+79
将自然数按以下规律排列:
第一列 第二列 第三列 第四列 第五列
第一行 1 4 5 16 17
第二行 2 3 6 15 …
第三行 9 8 7 14 …
第四行 10 11 12 13 …
第五行 …
表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应,根据这一规律,数2014对应的有序数对为 .
如图,图1中共有5个三角形,在图2中共有 个三角形,在图3中共有 个三角形 ……在第8个图形中共有 个三角形.
股民小万上周五以前以每股13元的价格买进某种股票10000股,该股票这周内与前一天相比的涨跌情况如下表(单位:元)
星期 |
一 |
二 |
三 |
四 |
五 |
每股涨跌 |
+0.6 |
-0.4 |
-0.2 |
+0.5 |
+0.3 |
(1)本周内哪一天把股票抛出比较合算?为什么?
(2)已知小万买进股票时付了3‰的手续费,卖出时需付成交额3‰的手续费和2‰的交易税,如果小万在星期五收盘前将全部股票卖出,他的收益情况如何?(注:3‰表示千分之三)
观察图,解答下列问题.
(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,……,第六层有11个圆圈.如果要你继续画下去第n层 有 圆圈
(2)某一层上有65个圆圈,这是第 层
(3)数图中的圆圈个数可以有多种不同的方法.
比如:前两层的圆圈个数和为(1+3)或22,
由此得,1+3 = 22.
同样,
由前三层的圆圈个数和得:1+3+5 = 32.
由前四层的圆圈个数和得:1+3+5+7 = 42.
由前五层的圆圈个数和得:1+3+5+7+9 = 52.
……
根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.
(4)计算:1+3+5+…+299的和;
(5)计算:101+103+105+…+299的和.
数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将数对(﹣2,3)放入其中得到数m= ,再将数对(m,1)放入其中后,得到的数是 .
试题篮
()