优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 根与系数的关系 / 解答题
初中数学

如图1,直线 y = x + 1 与抛物线 y = 2 x 2 相交于 A B 两点,与 y 轴交于点 M M N 关于 x 轴对称,连接 AN BN

(1)①求 A B 的坐标;②求证: ANM = BNM

(2)如图2,将题中直线 y = x + 1 变为 y = kx + b ( b > 0 ) ,抛物线 y = 2 x 2 变为 y = a x 2 ( a > 0 ) ,其他条件不变,那么 ANM = BNM 是否仍然成立?请说明理由.

来源:2017年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 b = - 2 c = - 1

①求该二次函数图象的顶点坐标;

②定义:对于二次函数 y = p x 2 + qx + r ( p 0 ) ,满足方程 y = x x 的值叫做该二次函数的"不动点".求证:二次函数 y = a x 2 + bx + c 有两个不同的"不动点".

(2)设 b = 1 2 c 3 ,如图所示,在平面直角坐标系 Oxy 中,二次函数 y = a x 2 + bx + c 的图象与 x 轴分别相交于不同的两点 A ( x 1 0 ) B ( x 2 0 ) ,其中 x 1 < 0 x 2 > 0 ,与 y 轴相交于点 C ,连结 BC ,点 D y 轴的正半轴上,且 OC = OD ,又点 E 的坐标为 ( 1 , 0 ) ,过点 D 作垂直于 y 轴的直线与直线 CE 相交于点 F ,满足 AFC = ABC FA 的延长线与 BC 的延长线相交于点 P ,若 PC PA = 5 5 a 2 + 1 ,求二次函数的表达式.

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 ( m 3 ) x m = 0

(1)求证:方程有两个不相等的实数根;

(2)如果方程的两实根为 x 1 x 2 ,且 x 1 2 + x 2 2 x 1 x 2 = 7 ,求 m 的值.

来源:2017年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于x的一元二次方程 x 2 2 x + m 1 0 有两个实数根x1x2

(1)求m的取值范围;

(2)当时,求m的值.

来源:2016年湖北省孝感市中考数学试卷
  • 题型:未知
  • 难度:未知

若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成“和谐三组数”.

(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;

(2)若 M ( t , y 1 ) N ( t + 1 , y 2 ) R ( t + 3 , y 3 ) 三点均在函数 y = k x ( k 为常数, k 0 ) 的图象上,且这三点的纵坐标 y 1 y 2 y 3 构成“和谐三组数”,求实数 t 的值;

(3)若直线 y = 2 bx + 2 c ( bc 0 ) x 轴交于点 A ( x 1 0 ) ,与抛物线 y = a x 2 + 3 bx + 3 c ( a 0 ) 交于 B ( x 2 y 2 ) C ( x 3 y 3 ) 两点.

①求证: A B C 三点的横坐标 x 1 x 2 x 3 构成“和谐三组数”;

②若 a > 2 b > 3 c x 2 = 1 ,求点 P ( c a b a ) 与原点 O 的距离 OP 的取值范围.

来源:2017年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 ( 2 m 2 ) x + ( m 2 2 m ) = 0

(1)求证:方程有两个不相等的实数根.

(2)如果方程的两实数根为 x 1 x 2 ,且 x 1 2 + x 2 2 = 10 ,求 m 的值.

来源:2018年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1x 2 c a

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 5 x + 2 m = 0 有实数根.

(1)求 m 的取值范围;

(2)当 m = 5 2 时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.

来源:2018年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于x的方程 x - 3 )( x - 2 )﹣ p 2 0

(1)求证:无论p取何值时,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1x2,且满足 x 1 2 + x 2 2 3 x 1 x 2 ,求实数p的值.

来源:2016年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0

(1)求证:无论 k 取何值,方程都有两个不相等的实数根.

(2)如果方程的两个实数根为 x 1 x 2 ,且 k x 1 x 2 都为整数,求 k 所有可能的值.

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程: x 2 ( t 1 ) x + t 2 = 0

(1)求证:对于任意实数 t ,方程都有实数根;

(2)当 t 为何值时,方程的两个根互为相反数?请说明理由.

来源:2017年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读理解:

材料一:若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成"和谐三数组".

材料二:若关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 的两根分别为 x 1 x 2 ,则有 x 1 + x 2 = - b a x 1 · x 2 = c a

问题解决:

(1)请你写出三个能构成"和谐三数组"的实数    

(2)若 x 1 x 2 是关于 x 的方程 a x 2 + bx + c = 0 ( a b c 均不为 0 ) 的两根, x 3 是关于 x 的方程 bx + c = 0 ( b c 均不为 0 ) 的解.求证: x 1 x 2 x 3 可以构成"和谐三数组";

(3)若 A ( m , y 1 ) B ( m + 1 , y 2 ) C ( m + 3 , y 3 ) 三个点均在反比例函数 y = 4 x 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 m 的值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

关于x的方程(k﹣1)x2+2kx+2=0.

(1)求证:无论k为何值,方程总有实数根.

(2)设x1x2是方程(k﹣1)x2+2kx+2=0的两个根,记 S = x 2 x 1 + x 1 x 2 + x 1 + x 2 S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.

来源:2016年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 2 x + a = 0 的两实数根 x 1 x 2 满足 x 1 x 2 + x 1 + x 2 > 0 ,求 a 的取值范围.

来源:2018年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 6 x + ( 2 m + 1 ) = 0 有实数根.

(1)求 m 的取值范围;

(2)如果方程的两个实数根为 x 1 x 2 ,且 2 x 1 x 2 + x 1 + x 2 20 ,求 m 的取值范围.

来源:2016年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学根与系数的关系解答题