优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用
初中数学

为了落实党的“精准扶贫”政策, A B 两城决定向 C D 两乡运送肥料以支持农村生产,已知 A B 两城共有肥料500吨,其中 A 城肥料比 B 城少100吨,从 A 城往 C D 两乡运肥料的费用分别为20元 / 吨和25元 / 吨;从 B 城往 C D 两乡运肥料的费用分别为15元 / 吨和24元 / 吨.现 C 乡需要肥料240吨, D 乡需要肥料260吨.

(1) A 城和 B 城各有多少吨肥料?

(2)设从 A 城运往 C 乡肥料 x 吨,总运费为 y 元,求出最少总运费.

(3)由于更换车型,使 A 城运往 C 乡的运费每吨减少 a ( 0 < a < 6 ) 元,这时怎样调运才能使总运费最少?

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

某蔬菜加工公司先后两批次收购蒜薹 ( tái ) 共100吨.第一批蒜薹价格为4000元 / 吨;因蒜薹大量上市,第二批价格跌至1000元 / 吨.这两批蒜薹共用去16万元.

(1)求两批次购进蒜薹各多少吨?

(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?

来源:2017年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书 x 套,乙种图书 y 套,请解答下列问题:

(1)请求出 y x 的函数关系式(不需要写出自变量的取值范围);

(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?

(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调 a ( a 为正整数)元,丙种图书的售价下调 a 元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及 a 的值.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

星期天,小明上午 8 : 00 从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离 y (千米)与时间 t (分钟)的关系如图所示,则上午 8 : 45 小明离家的距离是  千米.

来源:2018年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人 20 min 后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的 10 7 继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口 6 km 时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程 S (单位: km ) 和行驶时间 t (单位: min ) 之间的函数关系如图所示.

请结合图象解决下面问题:

(1)学校到景点的路程为   km ,大客车途中停留了   min a =   

(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?

(3)小轿车司机到达景点入口时发现本路段限速 80 km / h ,请你帮助小轿车司机计算折返时是否超速?

(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待  分钟,大客车才能到达景点入口.

来源:2018年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

某通讯公司就手机流量套餐推出三种方案,如下表:


A 方案

B 方案

C 方案

每月基本费用(元     )

20

56

266

每月免费使用流量(兆     )

1024

m

无限

超出后每兆收费(元     )

n

n


A B C 三种方案每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系如图所示.

(1)请写出 m n 的值.

(2)在 A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 C 方案最划算?

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的 60 % ,乙仓库所存原料的 40 % ,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.

(1)求甲、乙两仓库各存放原料多少吨?

(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元 / 吨和100元 / 吨.经协商,从甲仓库到工厂的运价可优惠 a / ( 10 a 30 ) ,从乙仓库到工厂的运价不变,设从甲仓库运 m 吨原料到工厂,请求出总运费 W 关于 m 的函数解析式(不要求写出 m 的取值范围);

(3)在(2)的条件下,请根据函数的性质说明:随着 m 的增大, W 的变化情况.

来源:2018年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向 A B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥; A B 两个果园分别需用110吨和70吨有机化肥.两个仓库到 A B 两个果园的路程如表所示:

路程(千米)

甲仓库

乙仓库

A 果园

15

25

B 果园

20

20

设甲仓库运往 A 果园 x 吨有机化肥,若汽车每吨每千米的运费为2元,

(1)根据题意,填写下表.

运量(吨 )

运费(元 )

甲仓库

乙仓库

甲仓库

乙仓库

A 果园

x

110 x

2 × 15 x

2 × 25 ( 110 x )

B 果园

  

  

  

  

(2)设总运费为 y 元,求 y 关于 x 的函数表达式,并求当甲仓库运往 A 果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品 x (吨),生产甲、乙两种产品获得的总利润为 y (万元).

(1)求 y x 之间的函数表达式;

(2)若每生产1吨甲产品需要 A 原料0.25吨,每生产1吨乙产品需要 A 原料0.5吨.受市场影响,该厂能获得的 A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

小明从家步行到学校需走的路程为1800米.图中的折线 OAB 反映了小明从家步行到学校所走的路程 s (米 ) 与时间 t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行  米.

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为 x 小时,快车行驶的路程为 y 1 千米,慢车行驶的路程为 y 2 千米.如图中折线 OAEC 表示 y 1 x 之间的函数关系,线段 OD 表示 y 2 x 之间的函数关系.

请解答下列问题:

(1)求快车和慢车的速度;

(2)求图中线段 EC 所表示的 y 1 x 之间的函数表达式;

(3)线段 OD 与线段 EC 相交于点 F ,直接写出点 F 的坐标,并解释点 F 的实际意义.

来源:2019年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额 y (元 ) 与销售量 x (千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:

(1)降价前苹果的销售单价是        / 千克;

(2)求降价后销售金额 y (元 ) 与销售量 x (千克)之间的函数解析式,并写出自变量的取值范围;

(3)该水果店这次销售苹果盈利了多少元?

来源:2019年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 20 cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 y ( cm ) 与生长时间 x (天 ) 之间的关系大致如图所示.

(1)求 y x 之间的函数关系式;

(2)当这种瓜苗长到大约 80 cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 y (千米)与行驶时间 x (小时)的对应关系如图所示:

(1)甲乙两地相距多远?

(2)求快车和慢车的速度分别是多少?

(3)求出两车相遇后 y x 之间的函数关系式;

(4)何时两车相距300千米.

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 题型:未知
  • 难度:未知

某周日上午 8 : 00 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 11 : 00 时他在活动中心接到爸爸的电话,因急事要求他在 12 : 00 前回到家,他即刻按照来活动中心时的路线,以5千米 / 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 x (小时)后,到达离家 y (千米)的地方,图中折线 OABCD 表示 y x 之间的函数关系.

(1)活动中心与小宇家相距     千米,小宇在活动中心活动时间为   小时,他从活动中心返家时,步行用了      小时;

(2)求线段 BC 所表示的 y (千米)与 x (小时)之间的函数关系式(不必写出 x 所表示的范围);

(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 12 : 00 前回到家,并说明理由.

来源:2017年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题