甲、乙两人分别从 , 两地相向而行,匀速行进甲先出发且先到达 地,他们之间的距离 与甲出发的时间 的关系如图所示,则乙由 地到 地用了 10 .
2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为 ,游轮行驶的时间记为 ,两艘轮船距离杭州的路程 关于 的图象如图2所示(游轮在停靠前后的行驶速度不变).
(1)写出图2中 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.
(2)若货轮比游轮早36分钟到达衢州.问:
①货轮出发后几小时追上游轮?
②游轮与货轮何时相距 ?
(2)①求出 , , , 的坐标,利用待定系数法求解即可.
②分三种情形种情形分别构建方程求解即可.
甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的 , 两处同时出发,都以不变的速度相向而行,图1是甲离开 处后行走的路程 (单位: 与行走时间 (单位: 的函数图象,图2是甲、乙两人之间的距离 (单位: 与甲行走时间 (单位: 的函数图象,则 .
甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.
(1)以 (单位:元)表示商品原价, (单位:元)表示实际购物金额,分别就两家商场的让利方式写出 关于 的函数解析式;
(2)新冠疫情期间如何选择这两家商场去购物更省钱?
晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,5分钟后晓琳也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程 (米 , (米 与运动时间 (分 之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米 分;② 的值是15, 的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是
A.1个B.2个C.3个D.4个
益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将 , 两种农产品定期运往益阳某加工厂,每次运输 , 产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元. , 两种产品原来的运费和现在的运费(单位:元 件)如下表所示:
品种 |
|
|
原运费 |
45 |
25 |
现运费 |
30 |
20 |
(1)求每次运输的农产品中 , 产品各有多少件?
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中 产品的件数不得超过 产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?
某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价 (元 不低于60元,而市场要求 不得超过100元.
(1)求出每天的销售量 (件 与销售单价 (元 之间的函数关系式,并写出 的取值范围;
(2)求出每天的销售利润 (元 与销售单价 (元 之间的函数关系式,并求出当 为多少时,每天的销售利润最大,并求出最大值;
(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价 最低可定为多少元?
为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有 , 两种型号的健身器材可供选择.
(1)劲松公司2015年每套 型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套 型健身器材年平均下降率 ;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司 , 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套 型健身器材售价为1.6万元,每套 型健身器材售价为 万元.
① 型健身器材最多可购买多少套?
②安装完成后,若每套 型和 型健身器材一年的养护费分别是购买价的 和 ,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?
某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品 (吨),生产甲、乙两种产品获得的总利润为 (万元).
(1)求 与 之间的函数表达式;
(2)若每生产1吨甲产品需要 原料0.25吨,每生产1吨乙产品需要 原料0.5吨.受市场影响,该厂能获得的 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
小明从家步行到学校需走的路程为1800米.图中的折线 反映了小明从家步行到学校所走的路程 (米 与时间 (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 米.
快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为 小时,快车行驶的路程为 千米,慢车行驶的路程为 千米.如图中折线 表示 与 之间的函数关系,线段 表示 与 之间的函数关系.
请解答下列问题:
(1)求快车和慢车的速度;
(2)求图中线段 所表示的 与 之间的函数表达式;
(3)线段 与线段 相交于点 ,直接写出点 的坐标,并解释点 的实际意义.
某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额 (元 与销售量 (千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:
(1)降价前苹果的销售单价是 元 千克;
(2)求降价后销售金额 (元 与销售量 (千克)之间的函数解析式,并写出自变量的取值范围;
(3)该水果店这次销售苹果盈利了多少元?
某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 与生长时间 (天 之间的关系大致如图所示.
(1)求 与 之间的函数关系式;
(2)当这种瓜苗长到大约 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?
一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 (千米)与行驶时间 (小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后 与 之间的函数关系式;
(4)何时两车相距300千米.
某周日上午 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 时他在活动中心接到爸爸的电话,因急事要求他在 前回到家,他即刻按照来活动中心时的路线,以5千米 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 (小时)后,到达离家 (千米)的地方,图中折线 表示 与 之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段 所表示的 (千米)与 (小时)之间的函数关系式(不必写出 所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 前回到家,并说明理由.
试题篮
()