优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用
初中数学

我国传统的计重工具 - - 秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为 x (厘米)时,秤钩所挂物重为 y (斤 ) ,则 y x 的一次函数.下表中为若干次称重时所记录的一些数据.

x (厘米)

1

2

4

7

11

12

y (斤 )

0.75

1.00

1.50

2.75

3.25

3.50

(1)在上表 x y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?

(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为 20 km / h ,游轮行驶的时间记为 t ( h ) ,两艘轮船距离杭州的路程 s ( km ) 关于 t ( h ) 的图象如图2所示(游轮在停靠前后的行驶速度不变).

(1)写出图2中 C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.

(2)若货轮比游轮早36分钟到达衢州.问:

①货轮出发后几小时追上游轮?

②游轮与货轮何时相距 12 km

(2)①求出 B C D E 的坐标,利用待定系数法求解即可.

②分三种情形种情形分别构建方程求解即可.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

小明从家步行到学校需走的路程为1800米.图中的折线 OAB 反映了小明从家步行到学校所走的路程 s (米 ) 与时间 t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行  米.

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 a 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 y (万人)与各自接种时间 x (天 ) 之间的关系如图所示.

(1)直接写出乙地每天接种的人数及 a 的值;

(2)当甲地接种速度放缓后,求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;

(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

A B 两地相距200千米.早上 8 : 00 货车甲从 A 地出发将一批物资运往 B 地,行驶一段路程后出现故障,即刻停车与 B 地联系. B 地收到消息后立即派货车乙从 B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往 B 地.两辆货车离开各自出发地的路程 y (千米)与时间 x (小时)的函数关系如图所示.(通话等其他时间忽略不计)

(1)求货车乙在遇到货车甲前,它离开出发地的路程 y 关于 x 的函数表达式.

(2)因实际需要,要求货车乙到达 B 地的时间比货车甲按原来的速度正常到达 B 地的时间最多晚1个小时,问货车乙返回 B 地的速度至少为每小时多少千米?

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

某地区山峰的高度每增加1百米,气温大约降低 0 . 6 ° C ,气温 T ( ° C ) 和高度 h (百米)的函数关系如图所示.

请根据图象解决下列问题:

(1)求高度为5百米时的气温;

(2)求 T 关于 h 的函数表达式;

(3)测得山顶的气温为 6 ° C ,求该山峰的高度.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.

(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?

(2)求该公司一个月销售这两种特产所能获得的最大总利润.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.

方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;

方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.

设某学生暑期健身 x (次 ) ,按照方案一所需费用为 y 1 (元 ) ,且 y 1 = k 1 x + b ;按照方案二所需费用为 y 2 (元 ) ,且 y 2 = k 2 x .其函数图象如图所示.

(1)求 k 1 b 的值,并说明它们的实际意义;

(2)求打折前的每次健身费用和 k 2 的值;

(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约 20 cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度 y ( cm ) 与生长时间 x (天 ) 之间的关系大致如图所示.

(1)求 y x 之间的函数关系式;

(2)当这种瓜苗长到大约 80 cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

某鲜花销售公司每月付给销售人员的工资有两种方案.

方案一:没有底薪,只付销售提成;

方案二:底薪加销售提成.

如图中的射线 l 1 ,射线 l 2 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资 y 1 (单位:元)和 y 2 (单位:元)与其当月鲜花销售量 x (单位:千克) ( x 0 ) 的函数关系.

(1)分别求 y 1 y 2 x 的函数解析式(解析式也称表达式);

(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?

来源:2021年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元 / 千克,现以8元卖出,挣得   元.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

某超市销售 A B 两款保温杯,已知 B 款保温杯的销售单价比 A 款保温杯多10元,用480元购买 B 款保温杯的数量与用360元购买 A 款保温杯的数量相同.

(1) A B 两款保温杯的销售单价各是多少元?

(2)由于需求量大, A B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且 A 款保温杯的数量不少于 B 款保温杯数量的两倍.若 A 款保温杯的销售单价不变, B 款保温杯的销售单价降低 10 % ,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.

已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 0 . 7 km ,图书馆离宿舍 1 km .周末,小亮从宿舍出发,匀速走了 7 min 到食堂;在食堂停留 16 min 吃早餐后,匀速走了 5 min 到图书馆;在图书馆停留 30 min 借书后,匀速走了 10 min 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离 ykm 与离开宿舍的时间 xmin 之间的对应关系.

请根据相关信息,解答下列问题:

(Ⅰ)填表:

离开宿舍的时间 / min

2

5

20

23

30

离宿舍的距离 / km

0.2

 0.5 

0.7

  

  

(Ⅱ)填空:

①食堂到图书馆的距离为   km

②小亮从食堂到图书馆的速度为   km / min

③小亮从图书馆返回宿舍的速度为   km / min

④当小亮离宿舍的距离为 0 . 6 km 时,他离开宿舍的时间为   min

(Ⅲ)当 0 x 28 时,请直接写出 y 关于 x 的函数解析式.

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

Ⅰ号无人机从海拔 10 m 处出发,以 10 m / min 的速度匀速上升,Ⅱ号无人机从海拔 30 m 处同时出发,以 a ( m / min ) 的速度匀速上升,经过 5 min 两架无人机位于同一海拔高度 b ( m ) .无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系如图.两架无人机都上升了 15 min

(1)求 b 的值及Ⅱ号无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系式;

(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

A B 两地相距 240 km ,甲货车从 A 地以 40 km / h 的速度匀速前往 B 地,到达 B 地后停止.在甲出发的同时,乙货车从 B 地沿同一公路匀速前往 A 地,到达 A 地后停止.两车之间的路程 y ( km ) 与甲货车出发时间 x ( h ) 之间的函数关系如图中的折线 CD - DE - EF 所示.其中点 C 的坐标是 ( 0 , 240 ) ,点 D 的坐标是 ( 2 . 4 , 0 ) ,则点 E 的坐标是  

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题