优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用
初中数学

如图,在平面直角坐标系中,抛物线轴相交于两点,与轴相交于点,顶点为,直线轴相交于点

(1)当时,抛物线顶点的坐标为    

(2)的长是否与值有关,说明你的理由;

(3)设,求的取值范围;

(4)以为斜边,在直线的左下方作等腰直角三角形.设,直接写出关于的函数解析式及自变量的取值范围.

来源:2018年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

某厂按用户的月需求量(件完成一种产品的生产,其中,每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件成反比,经市场调研发现,月需求量与月份为整数,,符合关系式为常数),且得到了表中的数据.

月份(月

1

2

成本(万元件)

11

12

需求量(件月)

120

100

(1)求满足的关系式,请说明一件产品的利润能否是12万元;

(2)求,并推断是否存在某个月既无盈利也不亏损;

(3)在这一年12个月中,若第个月和第个月的利润相差最大,求

来源:2017年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.

(1)当的半径为2时,

①在点中,的关联点是   

②点在直线上,若的关联点,求点的横坐标的取值范围.

(2)的圆心在轴上,半径为2,直线轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.

来源:2017年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

某农作物的生长率与温度有如下关系:如图1,当时可近似用函数刻画;当时可近似用函数刻画.

(1)求的值.

(2)按照经验,该作物提前上市的天数(天与生长率满足函数关系:

生长率

0.2

0.25

0.3

0.35

提前上市的天数(天

0

5

10

15

①请运用已学的知识,求关于的函数表达式;

②请用含的代数式表示

(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本(元与大棚温度之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

来源:2019年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

学校数学兴趣小组利用机器人开展数学活动.

在相距150个单位长度的直线跑道 AB 上,机器人甲从端点 A 出发,匀速往返于端点 A B 之间,机器人乙同时从端点 B 出发,以大于甲的速度匀速往返于端点 B A 之间.他们到达端点后立即转身折返,用时忽略不计.

兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种.

(观察)

①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点 A 之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点 A 之间的距离为      个单位长度;

②若这两个机器人第一次迎面相遇时,相遇地点与点 A 之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点 A 之间的距离为     个单位长度;

(发现)

设这两个机器人第一次迎面相遇时,相遇地点与点 A 之间的距离为 x 个单位长度,他们第二次迎面相遇时,相遇地点与点 A 之间的距离为 y 个单位长度.兴趣小组成员发现了 y x 的函数关系,并画出了部分函数图象(线段 OP ,不包括点 O ,如图2所示).

a =       

②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;

(拓展)

设这两个机器人第一次迎面相遇时,相遇地点与点 A 之间的距离为 x 个单位长度,他们第三次迎面相遇时,相遇地点与点 A 之间的距离为 y 个单位长度.

若这两个机器人第三次迎面相遇时,相遇地点与点 A 之间的距离 y 不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点 A 之间的距离 x 的取值范围是   .(直接写出结果)

来源:2019年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

红星公司销售一种成本为40元 / 件产品,若月销售单价不高于50元 / 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 x (单位:元 / 件),月销售量为 y (单位:万件).

(1)直接写出 y x 之间的函数关系式,并写出自变量 x 的取值范围;

(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?

(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 a 元.已知该公司捐款当月的月销售单价不高于70元 / 件,月销售最大利润是78万元,求 a 的值.

来源:2021年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买 A 种花卉与用900元购买 B 种花卉的数量相等,且 B 种花卉每盆比 A 种花卉多0.5元.

(1) A B 两种花卉每盆各多少元?

(2)计划购买 A B 两种花卉共6000盆,其中 A 种花卉的数量不超过 B 种花卉数量的 1 3 ,求购买 A 种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?

来源:2021年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

某品牌鞋子的长度 ycm 与鞋子的"码"数 x 之间满足一次函数关系.若22码鞋子的长度为 16 cm ,44码鞋子的长度为 27 cm ,则38码鞋子的长度为 (    )

A.

23 cm

B.

24 cm

C.

25 cm

D.

26 cm

来源:2021年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.

(1)求甲、乙两种消毒液的零售价分别是每桶多少元?

(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的 1 3 .由于购买量大,甲、乙两种消毒液分别获得了20元 / 桶、15元 / 桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?

来源:2021年内蒙古通辽市中考数学试卷
  • 题型:未知
  • 难度:未知

下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.

探究3

电话计费问题

下表中有两种移动电话计费方式.

月使用费 /

主叫限定时间 / min

主叫超时费 / (元 / min )

被叫

方式一

58

150

0.25

免费

方式二

88

350

0.19

免费

考虑下列问题:

月使用费固定收:

主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.

(1)设一个月内用移动电话主叫为 tmin ( t 是正整数).根据上表,列表说明:当 t 在不同时间范围内取值时,按方式一和方式二如何计费.

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.

(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 x 和自变量的函数 y ,请你帮小明写出:

x 表示问题中的    y 表示问题中的   

并写出计费方式一和二分别对应的函数解析式;

(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 : 坐标轴单位长度可根据需要自己确定)

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

某通讯公司就手机流量套餐推出三种方案,如下表:


A 方案

B 方案

C 方案

每月基本费用(元     )

20

56

266

每月免费使用流量(兆     )

1024

m

无限

超出后每兆收费(元     )

n

n


A B C 三种方案每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系如图所示.

(1)请写出 m n 的值.

(2)在 A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 C 方案最划算?

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量 y (瓶 ) 与每瓶售价 x (元 ) 之间存在一次函数关系(其中 10 x 21 ,且 x 为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.

(1)求 y x 之间的函数关系式;

(2)设该药店销售该消毒液每天的销售利润为 w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离 y (米 ) 与乙出发的时间 x (秒 ) 之间的函数关系如图所示,则下列结论正确的个数是 (    )

①乙的速度为5米 / 秒;

②离开起点后,甲、乙两人第一次相遇时,距离起点12米;

③甲、乙两人之间的距离超过32米的时间范围是 44 < x < 89

④乙到达终点时,甲距离终点还有68米.

A.

4

B.

3

C.

2

D.

1

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程 s (千米)与行驶时间 t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升 / 千米,请根据图象解答下列问题:

(1)写出工厂离目的地的路程;

(2)求 s 关于 t 的函数表达式;

(3)当货车显示加油提醒后,问行驶时间 t 在怎样的范围内货车应进站加油?

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

某商家正在热销一种商品,其成本为30元 / 件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元 / 件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量 y (件 ) 与售价 x (元 / 件)满足如图所示的函数关系(其中 40 x 70 ,且 x 为整数).

(1)写出 y x 的函数关系式;

(2)当售价为多少时,商家所获利润最大,最大利润是多少?

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题