探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 的图象并探究该函数的性质.
x |
… |
﹣4 |
﹣3 |
﹣2 |
﹣1 |
0 |
1 |
2 |
3 |
4 |
… |
y |
… |
|
a |
﹣2 |
﹣4 |
b |
﹣4 |
﹣2 |
|
|
… |
(1)列表,写出表中 , 的值: , ;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数 的图象关于y轴对称;
②当 时,函数 有最小值,最小值为 ;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线的解析式;
(2)直线与交于点,将直线沿方向平移,平移到经过点的位置结束,求直线在平移过程中与轴交点的横坐标的取值范围.
如图,一次函数 的图象交 轴于点 、交 轴于点 , 的平分线交 轴于点 ,过点 作直线 ,垂足为点 ,交 轴于点 .
(1)求直线 的解析式;
(2)在线段 上有一动点 (不与点 , 重合),过点 分别作 轴, 轴,垂足为点 、 ,是否存在点 ,使线段 的长最小?若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘常数 ,再加上常数 ”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图 .
也可用图象描述:如图1,在 轴上表示出 ,先在直线 上确定点 , ,再在直线 上确定纵坐标为 的点 , ,然后在 轴上确定对应的数 , ,以此类推.
【解决问题】研究输入实数 时,随着运算次数 的不断增加,运算结果 ,怎样变化.
(1)若 , ,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若 ,又得到什么结论?请说明理由;
(3)①若 , ,已在 轴上表示出 (如图2所示),请在 轴上表示 , , ,并写出研究结论;
②若输入实数 时,运算结果 互不相等,且越来越接近常数 ,直接写出 的取值范围及 的值(用含 , 的代数式表示)
如图,矩形 的顶点 、 分别位于 轴和 轴的正半轴上,线段 、 的长度满足方程 ,直线 分别与 轴、 轴交于 、 两点,将 沿直线 折叠,点 恰好落在直线 上的点 处,且
(1)求点 的坐标;
(2)求直线 的解析式;
(3)将直线 以每秒1个单位长度的速度沿 轴向下平移,求直线 扫过矩形 的面积 关于运动的时间 的函数关系式.
如图1,在直角坐标系 中,直线 交 轴, 轴于点 , ,点 的坐标是 ,过点 分别作 轴、 轴的垂线,垂足为 、 ,点 是线段 上的动点,以 为对称轴,作与 成轴对称的△ .
(1)当 时,求点 的坐标.
(2)当图1中的直线 经过点 ,且 时(如图 ,求点 由 到 的运动过程中,线段 扫过的图形与 重叠部分的面积.
(3)当图1中的直线 经过点 , 时(如图 ,以 为对称轴,作与 成轴对称的△ ,连接 , ,问是否存在点 ,使得△ 与△ 相似?若存在,求出 、 的值;若不存在,请说明理由.
如图,以菱形 对角线交点为坐标原点,建立平面直角坐标系, 、 两点的坐标分别为 , 、 ,直线 交 于 ,动点 从点 出发,以每秒2个单位的速度沿着 的路线向终点 匀速运动,设 的面积为 ,点 的运动时间为 秒.
(1)求直线 的解析式;
(2)求 与 之间的函数关系式,并写出自变量 的取值范围;
(3)当 为何值时, ?并求出此时直线 与直线 所夹锐角的正切值.
【定义】如图1, , 为直线 同侧的两点,过点 作直线 的对称点 ,连接 交直线 于点 ,连接 ,则称点 为点 , 关于直线 的“等角点”.
【运用】如图2,在平面直角坐标系 中,已知 , 两点.
(1) , , 三点中,点 是点 , 关于直线 的等角点;
(2)若直线 垂直于 轴,点 是点 , 关于直线 的等角点,其中 , ,求证: ;
(3)若点 是点 , 关于直线 的等角点,且点 位于直线 的右下方,当 时,求 的取值范围(直接写出结果).
如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上. 且 ,OB,OC的长分别是一元二次方程 的两个根 .
(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 时,直线l恰好过点C.当 时,求m关于t的函数关系式.
(3)当 时,请直接写出点P的坐标.
如图所示,在平面直角坐标系中,过点 A( )的两条直线分别交 y轴于 B、 C两点,且 B、 C两点的纵坐标分别是一元二次方程 x 2﹣2 x﹣3=0的两个根
(1)求线段 BC的长度;
(2)试问:直线 AC与直线 AB是否垂直?请说明理由;
(3)若点 D在直线 AC上,且 DB= DC,求点 D的坐标;
(4)在(3)的条件下,直线 BD上是否存在点 P,使以 A、 B、 P三点为顶点的三角形是等腰三角形?若存在,请直接写出 P点的坐标;若不存在,请说明理由.
在平面直角坐标系中,已知,动点在的图象上运动(不与重合),连接.过点作,交轴于点,连接.
(1)求线段长度的取值范围;
(2)试问:点运动的过程中,是否为定值?如果是,求出该值;如果不是,请说明理由.
(3)当为等腰三角形时,求点的坐标.
如图,在平面直角坐标系中,一次函数 的图象与 轴和 轴分别相交于 、 两点.动点 从点 出发,在线段 上以每秒3个单位长度的速度向点 作匀速运动,到达点 停止运动,点 关于点 的对称点为点 ,以线段 为边向上作正方形 .设运动时间为 秒.
(1)当 秒时,点 的坐标是 ;
(2)在运动过程中,设正方形 与 重叠部分的面积为 ,求 与 的函数表达式;
(3)若正方形 对角线的交点为 ,请直接写出在运动过程中 的最小值.
已知:在平面直角坐标系中,点 为坐标原点,点 在 轴的负半轴上,直线 与 轴、 轴分别交于 、 两点,四边形 为菱形.
(1)如图1,求点 的坐标;
(2)如图2,连接 ,点 为 内一点,连接 、 , 与 交于点 ,且 ,点 在线段 上,点 在线段 上,且 ,连接 、 ,若 ,求 的值;
(3)如图3,在(2)的条件下,当 时,求点 的坐标.
试题篮
()