优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

如图,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴交于点 A ( 1 , 0 ) 和点 B ( - 3 , 0 ) ,与 y 轴交于点 C ,连接 BC ,与抛物线的对称轴交于点 E ,顶点为点 D

(1)求抛物线的解析式;

(2)点 P 是对称轴左侧抛物线上的一个动点,点 Q 在射线 ED 上,若以点 P Q E 为顶点的三角形与 ΔBOC 相似,请直接写出点 P 的坐标.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,点 ( 1 , m ) 和点 ( 3 , n ) 在抛物线 y = a x 2 + bx ( a > 0 ) 上.

(1)若 m = 3 n = 15 ,求该抛物线的对称轴;

(2)已知点 ( - 1 , y 1 ) ( 2 , y 2 ) ( 4 , y 3 ) 在该抛物线上.若 mn < 0 ,比较 y 1 y 2 y 3 的大小,并说明理由.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线y=x2+bx+cx轴交于A(-1,0)和B(3,0)两点,交y轴于E.

(1)求此抛物线的表达式.
(2)若直线y=x+1与抛物线交于A,D两点,与y轴交于点F,连接DE,求△DEF的面积.

  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 - 3 ax - 4 a 的图象经过点 C ( 0 , 2 ) ,交 x 轴于点 A B (点 A 在点 B 左侧),连接 BC ,直线 y = kx + 1 ( k > 0 ) y 轴交于点 D ,与 BC 上方的抛物线交于点 E ,与 BC 交于点 F

(1)求抛物线的解析式及点 A B 的坐标;

(2) EF DF 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = ( x - 1 ) ( x - a ) ( a 为常数)的图象的对称轴为直线 x = 2

(1)求 a 的值.

(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, ΔABC 的顶点 A C 分别是直线 y = - 8 3 x + 4 与坐标轴的交点,点 B 的坐标为 ( - 2 , 0 ) ,点 D 是边 AC 上的一点, DE BC 于点 E ,点 F 在边 AB 上,且 D F 两点关于 y 轴上的某点成中心对称,连结 DF EF .设点 D 的横坐标为 m E F 2 l ,请探究:

①线段 EF 长度是否有最小值.

ΔBEF 能否成为直角三角形.

小明尝试用“观察 - 猜想 - 验证 - 应用”的方法进行探究,请你一起来解决问题.

(1)小明利用“几何画板”软件进行观察,测量,得到 l m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 2 ) .请你在图2中连线,观察图象特征并猜想 l m 可能满足的函数类别.

(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 l 关于 m 的函数表达式及自变量的取值范围,并求出线段 EF 长度的最小值.

(3)小明通过观察,推理,发现 ΔBEF 能成为直角三角形,请你求出当 ΔBEF 为直角三角形时 m 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + 4 x - 3 图象的顶点是 A ,与 x 轴交于 B C 两点,与 y 轴交于点 D .点 B 的坐标是 ( 1 , 0 )

(1)求 A C 两点的坐标,并根据图象直接写出当 y > 0 x 的取值范围.

(2)平移该二次函数的图象,使点 D 恰好落在点 A 的位置上,求平移后图象所对应的二次函数的表达式.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

我们把方程 ( x - m ) 2 + ( y - n ) 2 = r 2 称为圆心为 ( m , n ) 、半径长为 r 的圆的标准方程.例如,圆心为 ( 1 , - 2 ) 、半径长为3的圆的标准方程是 ( x - 1 ) 2 + ( y + 2 ) 2 = 9 .在平面直角坐标系中, C 与轴交于点 A B ,且点 B 的坐标为 ( 8 , 0 ) ,与 y 轴相切于点 D ( 0 , 4 ) ,过点 A B D 的抛物线的顶点为 E

(1)求 C 的标准方程;

(2)试判断直线 AE C 的位置关系,并说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y a x 2 + bx + 2 a 0 y 轴交于点 C ,与x轴交于 A B 两点(点 A 在点 B 的左侧),且 A 点坐标为 ( - 2 , 0 ) ,直线 BC 的解析式为 y = - 2 3 x + 2

(1)求抛物线的解析式;

(2)过点 A AD BC ,交抛物线于点D,点E为直线 BC 上方抛物线上一动点,连接CEEBBDDC.求四边形BECD面积的最大值及相应点E的坐标;

(3)将抛物线 y a x 2 + bx + 2 a 0 向左平移 2 个单位,已知点 M 为抛物线 y a x 2 + bx + 2 a 0 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A E M N 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = x 2 + bx + a y 2 = a x 2 + bx + 1 ( a b 是实数, a 0 )

(1)若函数 y 1 的对称轴为直线 x = 3 ,且函数 y 1 的图象经过点 ( a , b ) ,求函数 y 1 的表达式.

(2)若函数 y 1 的图象经过点 ( r , 0 ) ,其中 r 0 ,求证:函数 y 2 的图象经过点 ( 1 r 0 )

(3)设函数 y 1 和函数 y 2 的最小值分别为 m n ,若 m + n = 0 ,求 m n 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知二次函数 y = - 1 2 ( x - m ) 2 + 4 图象的顶点为 A ,与 y 轴交于点 B ,异于顶点 A 的点 C ( 1 , n ) 在该函数图象上.

(1)当 m = 5 时,求 n 的值.

(2)当 n = 2 时,若点 A 在第一象限内,结合图象,求当 y 2 时,自变量 x 的取值范围.

(3)作直线 AC y 轴相交于点 D .当点 B x 轴上方,且在线段 OD 上时,求 m 的取值范围.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 )

(1)求抛物线过点 B 时顶点 A 的坐标;

(2)点 A 的坐标记为 ( x , y ) ,求 y x 的函数表达式;

(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题