优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

如图,已知抛物线 y = x 2 + bx + c x 轴交于点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 BC 交抛物线的对称轴于点 E D 是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点 C 和点 D 的坐标;

(3)若点 P 在第一象限内的抛物线上,且 S ΔABP = 4 S ΔCOE ,求 P 点坐标.

注:二次函数 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + bx + c 的图象与 y 轴交于点 C ( 0 , 6 ) ,与 x 轴的一个交点坐标是 A ( 2 , 0 )

(1)求二次函数的解析式,并写出顶点 D 的坐标;

(2)将二次函数的图象沿 x 轴向左平移 5 2 个单位长度,当 y < 0 时,求 x 的取值范围.

来源:2016年贵州省黔南州中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + x - m = 0

(1)若方程有两个不相等的实数根,求 m 的取值范围;

(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.

来源:2021年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 3 3 x 2 + bx + 3 x 轴交于 A B 两点,与 y 轴交于点 C ,其中点 A 的坐标为 ( 3 , 0 )

(1)求 b 的值及点 B 的坐标;

(2)试判断 ΔABC 的形状,并说明理由;

(3)一动点 P 从点 A 出发,以每秒2个单位的速度向点 B 运动,同时动点 Q 从点 B 出发,以每秒1个单位的速度向点 C 运动(当点 P 运动到点 B 时,点 Q 随之停止运动),设运动时间为 t 秒,当 t 为何值时 ΔPBQ ΔABC 相似?

来源:2017年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ AOB 的直角边 OA x 轴上, OA = 2 AB = 1 ,将 Rt Δ AOB 绕点 O 逆时针旋转 90 ° 得到 Rt Δ COD ,抛物线 y = 5 6 x 2 + bx + c 经过 B D 两点.

(1)求二次函数的解析式;

(2)连接 BD ,点 P 是抛物线上一点,直线 OP ΔBOD 的周长分成相等的两部分,求点 P 的坐标.

来源:2017年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知抛物线 y = x 2 + bx + c x 轴交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于 C 点,点 P 是抛物线上在第一象限内的一个动点,且点 P 的横坐标为 t

(1)求抛物线的表达式;

(2)设抛物线的对称轴为 l l x 轴的交点为 D .在直线 l 上是否存在点 M ,使得四边形 CDPM 是平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由.

(3)如图2,连接 BC PB PC ,设 ΔPBC 的面积为 S

①求 S 关于 t 的函数表达式;

②求 P 点到直线 BC 的距离的最大值,并求出此时点 P 的坐标.

来源:2018年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象过点 O ( 0 , 0 ) A ( 8 , 4 ) ,与 x 轴交于另一点 B ,且对称轴是直线 x = 3

(1)求该二次函数的解析式;

(2)若 M OB 上的一点,作 MN / / AB OA N ,当 ΔANM 面积最大时,求 M 的坐标;

(3) P x 轴上的点,过 P PQ x 轴与抛物线交于 Q .过 A AC x 轴于 C ,当以 O P Q 为顶点的三角形与以 O A C 为顶点的三角形相似时,求 P 点的坐标.

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 BC两点,抛物线 y=﹣ x 2+ bx+ c经过点 BC,与 x轴另一交点为 A,顶点为 D

(1)求抛物线的解析式;

(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;

(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.

来源:2019年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 yax 2bx+ cab,若一次函数 ykx+4与二次函数的图象交于点 A(2,0).

(1)写出一次函数的解析式,并求出二次函数与 x轴交点坐标;

(2)当 ac时,求证:直线 ykx+4与抛物线 yax 2bx+ c一定还有另一个异于点 A的交点;

(3)当 cac+3时,求出直线 ykx+4与抛物线 yax 2bx+ c的另一个交点 B的坐标;记抛物线顶点为 M,抛物线对称轴与直线 ykx+4的交点为 N,设 S 25 9 S AMNS BMN,写出 S关于 a的函数,并判断 S是否有最大值?如果有,求出最大值;如果没有,请说明理由.

来源:2019年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 3 x + 5 4 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 D 是直线 BC 下方抛物线上一点,过点 D y 轴的平行线,与直线 BC 相交于点 E

(1)求直线 BC 的解析式;

(2)当线段 DE 的长度最大时,求点 D 的坐标.

来源:2016年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = - x 2 + bx + 3 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 D OC 的中点,点 P 在抛物线上.

(1) b =         

(2)若点 P 在第一象限,过点 P PH x 轴,垂足为 H PH C BD 分别交于点 M N .是否存在这样的点 P ,使得 PM = MN = NH ?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)若点 P 的横坐标小于3,过点 P PQ BD ,垂足为 Q ,直线 PQ x 轴交于点 R ,且 S ΔPQB = 2 S ΔQRB ,求点 P 的坐标.

来源:2019年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = x 2 + bx + c ( b c 为常数)的图象经过点 A ( 3 , 1 ) ,点 C ( 0 , 4 ) ,顶点为点 M ,过点 A AB / / x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC

(1)求该二次函数的解析式及点 M 的坐标;

(2)若将该二次函数图象向下平移 m ( m > 0 ) 个单位,使平移后得到的二次函数图象的顶点落在 ΔABC 的内部(不包括 ΔABC 的边界),求 m 的取值范围;

(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 ΔBCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).

来源:2016年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题