如图,已知抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 交抛物线的对称轴于点 , 是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点 和点 的坐标;
(3)若点 在第一象限内的抛物线上,且 ,求 点坐标.
注:二次函数 的顶点坐标为 ,
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.
已知二次函数 的图象与 轴交于点 ,与 轴的一个交点坐标是 .
(1)求二次函数的解析式,并写出顶点 的坐标;
(2)将二次函数的图象沿 轴向左平移 个单位长度,当 时,求 的取值范围.
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,其中点 的坐标为
(1)求 的值及点 的坐标;
(2)试判断 的形状,并说明理由;
(3)一动点 从点 出发,以每秒2个单位的速度向点 运动,同时动点 从点 出发,以每秒1个单位的速度向点 运动(当点 运动到点 时,点 随之停止运动),设运动时间为 秒,当 为何值时 与 相似?
如图, 的直角边 在 轴上, , ,将 绕点 逆时针旋转 得到 ,抛物线 经过 、 两点.
(1)求二次函数的解析式;
(2)连接 ,点 是抛物线上一点,直线 把 的周长分成相等的两部分,求点 的坐标.
如图1,已知抛物线 与 轴交于 , 两点,与 轴交于 点,点 是抛物线上在第一象限内的一个动点,且点 的横坐标为 .
(1)求抛物线的表达式;
(2)设抛物线的对称轴为 , 与 轴的交点为 .在直线 上是否存在点 ,使得四边形 是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
(3)如图2,连接 , , ,设 的面积为 .
①求 关于 的函数表达式;
②求 点到直线 的距离的最大值,并求出此时点 的坐标.
如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 B、 C两点,抛物线 y=﹣ x 2+ bx+ c经过点 B、 C,与 x轴另一交点为 A,顶点为 D.
(1)求抛物线的解析式;
(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;
(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.
已知二次函数 y= ax 2﹣ bx+ c且 a= b,若一次函数 y= kx+4与二次函数的图象交于点 A(2,0).
(1)写出一次函数的解析式,并求出二次函数与 x轴交点坐标;
(2)当 a> c时,求证:直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c一定还有另一个异于点 A的交点;
(3)当 c< a≤ c+3时,求出直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c的另一个交点 B的坐标;记抛物线顶点为 M,抛物线对称轴与直线 y= kx+4的交点为 N,设 S= S △ AMN﹣ S △ BMN,写出 S关于 a的函数,并判断 S是否有最大值?如果有,求出最大值;如果没有,请说明理由.
如图,抛物线 与 轴相交于 、 两点,与 轴相交于点 ,点 是直线 下方抛物线上一点,过点 作 轴的平行线,与直线 相交于点
(1)求直线 的解析式;
(2)当线段 的长度最大时,求点 的坐标.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 ,点 为 的中点,点 在抛物线上.
(1) ;
(2)若点 在第一象限,过点 作 轴,垂足为 , 与 、 分别交于点 、 .是否存在这样的点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由;
(3)若点 的横坐标小于3,过点 作 ,垂足为 ,直线 与 轴交于点 ,且 ,求点 的坐标.
如图,已知二次函数 , 为常数)的图象经过点 ,点 ,顶点为点 ,过点 作 轴,交 轴于点 ,交该二次函数图象于点 ,连接 .
(1)求该二次函数的解析式及点 的坐标;
(2)若将该二次函数图象向下平移 个单位,使平移后得到的二次函数图象的顶点落在 的内部(不包括 的边界),求 的取值范围;
(3)点 是直线 上的动点,若点 ,点 ,点 所构成的三角形与 相似,请直接写出所有点 的坐标(直接写出结果,不必写解答过程).
试题篮
()