如图,过抛物线 上一点 作 轴的平行线,交抛物线于另一点 ,交 轴于点 ,已知点 的横坐标为 .
(1)求抛物线的对称轴和点 的坐标;
(2)在 上任取一点 ,连接 ,作点 关于直线 的对称点 ;
①连接 ,求 的最小值;
②当点 落在抛物线的对称轴上,且在 轴上方时,求直线 的函数表达式.
定义:如图1,抛物线 与 轴交于 , 两点,点 在该抛物线上 点与 、 两点不重合),如果 的三边满足 ,则称点 为抛物线 的勾股点.
(1)直接写出抛物线 的勾股点的坐标.
(2)如图2,已知抛物线 与 轴交于 , 两点,点 是抛物线 的勾股点,求抛物线 的函数表达式.
(3)在(2)的条件下,点 在抛物线 上,求满足条件 的 点(异于点 的坐标.
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).
如图,在平面直角坐标系 中,已知 , 两点的坐标分别为 , , 是线段 上一点(与 , 点不重合),抛物线 经过点 , ,顶点为 ,抛物线 经过点 , ,顶点为 , , 的延长线相交于点 .
(1)若 , ,求抛物线 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在这样的实数 ,无论 取何值,直线 与 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由.
在平面直角坐标系中,设二次函数 ,其中 .
(1)若函数 的图象经过点 ,求函数 的表达式;
(2)若一次函数 的图象与 的图象经过 轴上同一点,探究实数 , 满足的关系式;
(3)已知点 , 和 在函数 的图象上,若 ,求 的取值范围.
如图,抛物线 交 轴于点 , 轴,交抛物线于点 ,点 在抛物线上,且在第一象限内, 轴,交 轴于点 ,交 的延长线于点 , .
(1)用含 的代数式表示 的长.
(2)当 时,判断点 是否落在抛物线上,并说明理由.
(3)若 轴,交 于点 ,交 于点 .
①若 与 的面积相等,求 的值.
②连接 ,交 于点 ,若 与 的面积相等,则 的值是 .
已知二次函数 的图象,如图所示
(1)根据方程的根与函数图象之间的关系,将方程 的根在图上近似地表示出来(描点),并观察图象,写出方程 的根(精确到 .
(2)在同一直角坐标系中画出一次函数 的图象,观察图象写出自变量 取值在什么范围时,一次函数的值小于二次函数的值.
(3)如图,点 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在 点上,写出平移后二次函数图象的函数表达式,并判断点 是否在函数 的图象上,请说明理由.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,点 的坐标为
(1)求 的值及抛物线的顶点坐标.
(2)点 是抛物线对称轴 上的一个动点,当 的值最小时,求点 的坐标.
在平面直角坐标系中,点 为原点,平行于 轴的直线与抛物线 相交于 , 两点(点 在第一象限),点 在 的延长线上.
(1)已知 ,点 的纵坐标为2.
①如图1,向右平移抛物线 使该抛物线过点 ,与 的延长线交于点 ,求 的长.
②如图2,若 ,过点 , 的抛物线 ,其顶点 在 轴上,求该抛物线的函数表达式.
(2)如图3,若 ,过 , , 三点的抛物线 ,顶点为 ,对应函数的二次项系数为 ,过点 作 轴,交抛物线 于 , 两点,求 的值,并直接写出 的值.
如图,已知二次函数 , 为常数)的图象经过点 ,点 ,顶点为点 ,过点 作 轴,交 轴于点 ,交该二次函数图象于点 ,连接 .
(1)求该二次函数的解析式及点 的坐标;
(2)若将该二次函数图象向下平移 个单位,使平移后得到的二次函数图象的顶点落在 的内部(不包括 的边界),求 的取值范围;
(3)点 是直线 上的动点,若点 ,点 ,点 所构成的三角形与 相似,请直接写出所有点 的坐标(直接写出结果,不必写解答过程).
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
如图,抛物线 过 、 ,直线 交抛物线于点 ,点 的横坐标为 ,点 是线段 上的动点,过点 的直线垂直于 轴,交抛物线于点 .
(1)求直线 及抛物线的解析式;
(2)求线段 的长度 与 的关系式, 为何值时, 最长?
(3)在平面内是否存在整点(横、纵坐标都为整数) ,使得 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,说明理由.
已知:如图,抛物线 与坐标轴分别交于点 , , ,点 是线段 上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点 运动到什么位置时, 的面积有最大值?
(3)过点 作 轴的垂线,交线段 于点 ,再过点 做 轴交抛物线于点 ,连接 ,请问是否存在点 使 为等腰直角三角形?若存在,求出点 的坐标;若不存在,说明理由.
在平面直角坐标系 中,已知抛物线的顶点坐标为 ,且经过点 ,如图,直线 与抛物线交于 、 两点,直线 为 .
(1)求抛物线的解析式;
(2)在 上是否存在一点 ,使 取得最小值?若存在,求出点 的坐标;若不存在,请说明理由.
(3)知 , 为平面内一定点, 为抛物线上一动点,且点 到直线 的距离与点 到点 的距离总是相等,求定点 的坐标.
试题篮
()