已知抛物线经过点和点,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)如图,点,分别在线段,上(点不与点,重合),且,,直接写出线段的长.
已知抛物线,为常数).
(1)若抛物线的顶点坐标为,求,的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求的取值范围;
(3)在(1)的条件下,存在正实数,,当时,恰好,求,的值.
如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.
(1)求此抛物线的解析式;
(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.
在平面直角坐标系中,顶点为的抛物线与轴交于、两点,与轴交于点,已知,.
(1)求抛物线对应的二次函数表达式;
(2)探究:如图1,连接,作交的延长线于点,连接交于点,是的中点,则是否将四边形分成面积相等的两部分?请说明理由;
(3)应用:如图2,是抛物线在第四象限的图象上的点,且,连接、,在线段上确定一点,使平分四边形的面积,求点的坐标.
提示:若点、的坐标分别为,、,,则线段的中点坐标为,.
如图一,抛物线过、、三点.
(1)求该抛物线的解析式;
(2),、两点均在该抛物线上,若,求点横坐标的取值范围;
(3)如图二,过点作轴的平行线交抛物线于点,该抛物线的对称轴与轴交于点,连结、,点为线段的中点,点、分别为直线和上的动点,求周长的最小值.
如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.
(1)求该抛物线的函数关系表达式;
(2)当点在线段(点不与、重合)上运动至何处时,线段的长有最大值?并求出这个最大值;
(3)在第四象限的抛物线上任取一点,连接、.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.
如图,已知二次函数图象的顶点坐标为,与坐标轴交于、、三点,且点的坐标为.
(1)求二次函数的解析式;
(2)在二次函数图象位于轴上方部分有两个动点、,且点在点的左侧,过、作轴的垂线交轴于点、两点,当四边形为矩形时,求该矩形周长的最大值;
(3)当矩形的周长最大时,能否在二次函数图象上找到一点,使的面积是矩形面积的?若存在,求出该点的横坐标;若不存在,请说明理由.
在画二次函数的图象时,甲写错了一次项的系数,列表如下
0 |
1 |
2 |
3 |
||||
6 |
3 |
2 |
3 |
6 |
乙写错了常数项,列表如下:
0 |
1 |
2 |
3 |
||||
2 |
7 |
14 |
通过上述信息,解决以下问题:
(1)求原二次函数的表达式;
(2)对于二次函数,当 时,的值随的值增大而增大;
(3)若关于的方程有两个不相等的实数根,求的取值范围.
若二次函数的图象与轴、轴分别交于点、,且过点.
(1)求二次函数表达式;
(2)若点为抛物线上第一象限内的点,且,求点的坐标;
(3)在抛物线上下方)是否存在点,使?若存在,求出点到轴的距离;若不存在,请说明理由.
已知抛物线的对称轴为直线,其图象与轴相交于,两点,与轴相交于点.
(1)求,的值;
(2)直线与轴相交于点.
①如图1,若轴,且与线段及抛物线分别相交于点,,点关于直线的对称点为点,求四边形面积的最大值;
②如图2,若直线与线段相交于点,当时,求直线的表达式.
在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5.
(1)求抛物线和一次函数的解析式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标.
(2)点在该二次函数图象上.
①当时,求的值;
②若点到轴的距离小于2,请根据图象直接写出的取值范围.
已知二次函数的图象经过,两点.
(1)求,的值.
(2)二次函数的图象与轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.
如图,抛物线过点,对称轴是直线,且抛物线与轴的正半轴交于点.
(1)求抛物线的解析式,并根据图象直接写出当时,自变量的取值范围;
(2)在第二象限内的抛物线上有一点,当时,求的面积.
试题篮
()