如图,已知二次函数的图象经过点, ,与轴交于点.
(1)求抛物线的解析式;
(2)抛物线上是否存在点,使,若存在请直接写出点的坐标.若不存在,请说明理由.
已知关于 的一元二次方程 .
(1)求证:无论 为任何非零实数,此方程总有两个实数根;
(2)若抛物线 与 轴交于 , 、 , 两点,且 ,求 的值;
(3)若 ,点 与 在(2)中的抛物线上(点 、 不重合),求代数式 的值.
若二次函数图象的顶点在一次函数的图象上,则称为的伴随函数,如:是的伴随函数.
(1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;
(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数的图象交轴于点,(点在点的左侧)
(1)求点,的坐标,并根据该函数图象写出时的取值范围.
(2)把点向上平移个单位得点.若点向左平移个单位,将与该二次函数图象上的点重合;若点向左平移个单位,将与该二次函数图象上的点重合.已知,,求,的值.
某学习小组在研究函数 的图象与性质时,已列表、描点并画出了图象的一部分.
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3.5 |
4 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
(1)请补全函数图象;
(2)方程 实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.
已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.
(1)求的值;
(2)若点在物线上,且到轴的距离是2,求点的坐标.
已知二次函数 为常数).
(1)求证:不论 为何值,该函数的图象与 轴总有公共点;
(2)当 取什么值时,该函数的图象与 轴的交点在 轴的上方?
已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为,是这个二次函数图象上的点,是原点.
(1)不等式是否成立?请说明理由;
(2)设是的面积,求满足的所有点的坐标.
如图, 的顶点 、 分别在 轴, 轴上, ,且 的面积为8.
(1)直接写出 、 两点的坐标;
(2)过点 、 的抛物线 与 轴的另一个交点为点 .
①若 是以 为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线 向下平移4个单位后,恰好与直线 只有一个交点 ,求点 的坐标.
如图,在平面直角坐标系中,二次函数 图象的顶点是 ,与 轴交于 , 两点,与 轴交于点 .点 的坐标是 .
(1)求 , 两点的坐标,并根据图象直接写出当 时 的取值范围.
(2)平移该二次函数的图象,使点 恰好落在点 的位置上,求平移后图象所对应的二次函数的表达式.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 , .
(1)判断顶点 是否在直线 上,并说明理由.
(2)如图1,若二次函数图象也经过点 , ,且 ,根据图象,写出 的取值范围.
(3)如图2,点 坐标为 ,点 在 内,若点 , , , 都在二次函数图象上,试比较 与 的大小.
已知二次函数 的图象与 轴交于点 ,与 轴的一个交点坐标是 .
(1)求二次函数的解析式,并写出顶点 的坐标;
(2)将二次函数的图象沿 轴向左平移 个单位长度,当 时,求 的取值范围.
试题篮
()